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1. INTRODUCTION 

a. Statement of the  problem 

Thunderstorms  are  meteorological  phenomena  of  great  importance  to 

meteorologists  because of the  energy  conversions  and  momentum  transports 

which  occur.  Manifestations  of  the  above  are  the  damaging  winds  and 

hail so often  observed.  Unfortunately,  the  prediction  of  the  occurrence 

and  intensity  of  these  storms  has  been a problem  of  substantial  signifi- 

cance  for  meteorologists  that  has  defied  easy  solution.  There  are 

several  reasons  for  this.  First, a thunderstorm  ranges  in  diameter  from 

a few  tens  to  one  hundred  kilometers  and  lasts  on  the  order  of 

10 to 10 seconds.  Such  mesoscale  phenomena  elude  detection  by  most 

routine  observations.  Also,  the  analysis  and  forecast  schemes  that  are 

in  operational  use  are  applied  to  areas  and  time  scales  much  greater  than 

these.  The  larger  scales  permit  only a degree  of  success  in  predicting 

large  areas  in  which  the  likelihood  of  thunderstorm  occurrence  is  great 

(Fawcett,  1977).  Another  reason  is  that our knowledge  of  the  dynamics 

and  thermodynamics  of  thunderstorms  is  not  sufficient  to  explain  these 

phenomena.  Also,  the  precise  nature  of  the  interactions  between  the 

large-  and  small-scale  circulations  is  not  sufficiently  well  understood 

(Barnes, 1976) for  the  purpose  of  exact  forecasting. 

3 4 

One  approach  to  the  solution  of  the  forecasting  problem  is  through 

parameterization  of  large-scale  processes  and  use  of  appropriate  statis- 

tical  techniques.  There  may  be  information  from  present  observations 

that,  when  used  in  certain  combinations,  can  improve  the  prediction  of 

The  citations  on  the  following  pages  follow  the  style  of  the 
Journal of Applied  Meteorology. 



thunderstorms  over a 2- t o  5-h period.  For  periods less than 2 hours, 

pers is tence and radar  pattern  recognition  techniques  should  give  the 

bes t   r e su l t s .  For  periods beyond 5 h, it i s  unl ikely  that   observat ions 

w i l l  reflect the  structure  of  the  atmosphere which produces  thunderstorms. 

Furthermore,  there may be improvement in   p red ic t ion  i f  upper-air  data 

were col lec ted  a t  more frequent   intervals .   Final ly ,  optimum combina- 

t ions  of  parameters  determined by s t a t i s t i ca l   t echn iques  may l e a d   t o  

improved physical models. 

The hypotheses  underlying  this  research  are  that   manifestations of 

the  thermodynamic and hydrodynamic in te rac t ions  which  evolve in to   in -  

tense  convection  in  the  atmosphere  can  be  detected  in  routine  observa- 

t ions  and that  these  observed  parameters  can be used i n  a s t a t i s t i c a l  

model (which  minimizes  the  unexplained  variance  of  observed  thunder- 

storms)  for  prediction. 

b.   Previous  studies 

1) Nature  of  thunderstorms 

Thunderstorms  occur in  comparatively  small  regions  in  the  atmosphere. 

P r i o r   t o  1947 there  were few measurements  of meteorological  variables 

i n  and near  thunderstorms, so that   c i rculat ion,   pressure,   temperature ,  

and moisture  patterns were known only  qual i ta t ively.  With the  real iza-  

t i on  of the Thunderstorm Project  (Byers  and Braham, 1949), however, our 

quant i ta t ive  knowledge increased  s ignif icant ly .  Measurements col lected 

over a 2-yrperiod  established  the  horizontal  and ve r t i ca l   s t ruc tu re  of 

many meteorological  variables  associated w i t h  thunderstorms and  confirmed 

the existence  of  multiple  convective cells  in  various  stages  of  develop- 

ment. 

2 



Scorer  and Ludlam (1953)  proposed a bubble  theory  of  convection 

that explains many of  the  observed features of a growing  convective 

element.  In  this  concept,  the  kinematics resemble those  of a spherical  

vortex, as discussed by Woodward (1959)  and  Turner  (1964). Later s tages  

better  resemble a j e t  of upward-moving a i r  (Squires  and  Turner,  1962) 

which exists in   near ly   s teady  state, par t icu lar ly   in   the   p resence   o f  

v e r t i c a l  wind shear. Ludlam (1963) discussed the r o l e  of t h e   t i l t e d  

updraft  core, a manifestation  of wind shear, as a natural  way t o  sh ie ld  

the  updraft   that   generates  energy f r o m  the  destructive  influences  of 

precipitation-induced  downdrafts and  environmental  entrainment. 

Recent  meteorological literature contains many articles concerning 

thunderstorms,   their   in teract ions,   in tensif icat ion,  movement, and  struc- 

tu re .  I t  is not  our  purpose t o  review  these  in  detail ,   but  the  follow- 

ing  synopsis w i l l  point  out  the  complexity  of  thunderstorms  and  environ- 

mental   interactions  with which w e  must be  concerned. 

Thunderstorms grow from a few kilometers  in  diameter  to  large,  

quasi-steady  supercells 20-50 km i n  diameter (Browning and Ludlam, 1962). 

They can las t  from 30  min t o  many hours. Such storms may o r  may not 

spawn tornadoes,   rotate,   contain  destructive  downdrafts  or  hail ,   or  exist  

i n   s t rong  wind shear. Even the  simple cumulus source is  not simple a t  

a l l ,  as pointed  out by Auer (1976)  from his   observat ions  of   dis tor t ions 

of 0 f ie lds   near  a cloud  boundary. The entraining plume model f a l l s  

short  of  describing  the  thunderstorm documented by Saunders  and  Paine 

(1975). In  this severe  supercell   there w a s  l i t t l e  downdraft a t  the  

surface,   but a mesoscale  updraft-downdraft  doublet a l o f t  seemed t o  per- 

mit v e r t i c a l  motions . to  persist for  several  hours  without large 

e 



perturbations  in  isentropic  surfaces.  Lemon  (1976)  discusses a flanking 

line  thunderstorm  which  includes  both  multicell  and  supercell  storms 

that  derive  impetus  'from  entrainment  of  flanking  cells.  Still  another 

category  termed  "spearhead  echo"  by  Fujita  and  Byers  (1977)  has  in- 

tense  destructive  downdrafts  which  appear  to  be  tied  to  overshooting 

tops  of  clouds  at  the  anvil  level.  Finally, a fascinating  observation 

that  "the  growth  of  vigorous  squall  lines  and  severe  weather  are  sharp- 

ly  inhibited  at  and  to  the  south  of  the  subtropical  jet"  is  documented 

and  explained  by  Whitney  (1977). 

As new  mesoscale  observational  tools,  such  as  Doppler  radar  and 

storm  satellites  (Shenk, " et  al.,  19761,  are  added  to  our  operational 

inventory,  we  are  likely  to  observe  even  more  differences  among  thunder- 

storms.  Now,  we  have  observations  of  internal  motions  within  cells  from 

experimental  Doppler  radar  (see,  for  example,  Brandes,  1977;  Kropfli 

and  Miller,  1976).  Complicated  motion  patterns  of  outflow  aloft  and 

jet  stream  interaction  can  be  observed  from  stationary  satellite  picture 

composites.  The  intricate  details of overshooting,  which  seem  to  be 

linked  to  tornado  formation,  can  be  seen  from  satellite  film  loops  as 

well. 

There is no  "typical"  thunderstorm.  Each  storm  is  unique  in  many 

respects.  It  is  highly  unlikely  that  identical  environmental  impulses 

exist  on  different  days  or  even  in  different  locations  on  the  same 

day.  It  is  not  surprising  that  modelers  and  forecasters  have  much 

difficulty  in  their  tasks  of  understanding  and  forecasting  these  phe- 

nomena. 

Concerning  the  environment,  we  know  that  conditions  necessary  for 

4 



severe  convective  development  involve  a)  convective  instability  and a 

lifting  mechanism  to  release  it,  b)  abundant  low-level  moisture  over 

which a dry-air  intrusion  exists,  and  c)  bands of strong  winds  in  the 

lower  and  upper  levels  (Miller, 1972). For  less  severe  storms  this 

list  reduces  to  moisture,  potential  instability , and a trigger.  These 

conditions  must  be  identified  through  existing  meteorological  data  net- 

works  and  numerical  prognoses. 

1 

2) Forecasting  procedures 

Present  forecasting  procedures  are  somewhat  subjective,  and  there- 

fore  strongly  influenced  by a person's  knowledge  and  experience. As 

these  vary  with  individuals  who  tend  not  to  stay  at  one  location, 

thunderstorm  forecasting  procedures  for a given  point  are  highly  vari- 

able. A typical  forecast  involves 1) a study  of  the  existing  and  past 

large-scale  weather  patterns  with  emphasis  on  the  location  of  discon- 

tinuities  and  features  discussed  in  the  preceding  paragraph, 2) an 

analysis  of  stability  of  the  atmosphere  from  the  nearest  and  latest 

upper-air  sounding, 3 )  evaluating  the  latest  available  numerical  fore- 

casts  and  interpolating  for a given  time  and  location, 4) a closer  look 

at  the  local  weather  and  hourly  changes,  partidularly  from  surface 

observations  and  radar,  and 5) a decision  on  whether  or  not all the 

ingredients  for  thunderstorms  will  exist  at  the  station  for  the  future 

time  in  question.  This  last  step  requires  synthesizing  all  the  data 

from  the  previous  steps. 

Objective  techniques  offer  several  advantages.  They  do  not  require 

'Defined  by  Palm&  and  Newton (1969 , p. 345) to  include  both  con- 
vective  and  conditional  instability. 



extensive  personal  experience;  they  can  synthesize a great  amount of 

data  rapidly  and  effectively;  they  can  be  automated.  Furthermore,  they 

can  be  developed  to  make  maximum  use of historical  observations.  Finally, 

established  rules  for  parameterizations  can  be  followed. 

There  are  three  steps  in a parameterization  approach.  First,  one 

must  know  the  processes  (equations)  involved.  Next,  relevant  parameters 

must  be  combined  in  an  appropriate  functional  relationship.  Finally, 

one  must  test  the  results. A more  detailed  description of parameteriza- 

tion  techn,iques  is  given  in  the  Global  Atmospheric  Research  Programme 

(GARP)  Publication  No. 8 (1972). 

A statistical  approach  to  thunderstorm  forecasting  is  used  partly 

to  alleviate  the  disparity  between  the  lack  of  understanding  and  the 

need  for  prediction,  partly  to  glean  as  much  information  as  possible 

from  existing  data,  and  partly  to  gain  the  benefits of objective  fore- 

casting  schemes.  The  forecasting  of  mesoscale  phenomena  by  statistical 

techniques  is  not  new.  Persistence  probability  has  aided  the  operational 

forecaster  in  predicting  changes  in  ceiling  and  visibility  as  well  as 

the  onset  and  duration  of  critical  values  of  meteorological  variables. 

Endlich  and  Mancuso (1968) combined a number  of  measured  atmospheric 

quantities  into  several  kinematic  and  thermodynamic  parameters  which 

were  correlated  with  severe  thunderstorms  and  tornadoes.  Similarly, 

observational  data  were  used  in an objective  (statistical)  procedure 

to  forecast  severe  thunderstorms  and  tornadoes  by  Miller  and  David  (1971). 

Probability-of-precipitation  forecasts  and  other  model  output  statistics 

have  been  available  for  several  years  (Glahn  and  Lowry,  1972).  More 

recently,  24-h  forecasts of probabilities  of  thunderstorms  and  severe 
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thunderstorms  have  become  available  from  the  National  Weather  Service 

(Alaka  et  al.,  1973).  In  these  procedures,  various  potential  predictors 

from  numerical  forecasts  were  used  in a screening  regression  program. 

Those  predictors  selected  account  for a certain  fraction  of  the  total 

variance  of  observed  thunderstorms  as  derived  from  historical  manually 

digitized  radar (MDR) data  (Moore  et  al., 1974). Finally, a statistical 

regression  forecast  for  severe  thunderstorms 2 to 6 h in  the  future  also 

recently  became  available  (Charba,  1975).  General  thunderstorm  fore- 

casts  were  added  during  the  spring  of  1976,  and  other  improvements  were 

made  in  1977  by  Charba  (1977)  (see,  also,  the  National  Weather  Service 

Technical  Procedures  Bulletin 194). 

In  these  latter  procedures  predictors  were  derived  from  surface ob- 

servations  and  dynamic  model  forecasts.  An  advantage  to  the  use  of 

parameters  from  forecast  models  is  that  the  physics  of  the  circulation 

system  is  included. A disadvantage,  however,  is  that  changes  to  the 

model  necessitate  development  of  new  equations,  as  the  old  regression 

equations  apply  only  to  variables  calculated  from  the  former  model. 

Another  disadvantage  is  that  inaccuracies  in  the  forecasts  will  limit 

the  degree  to  which  the  model  can  de’scribe  the  predictand.  Finally, 

predictors  lose  their  simple  interpretation  in  that  forecast  elements 

include  biases  from  the  model.  In  this  research  the  disadvantages  are 

eliminated,  and  the  physics  will  be  included  to  the  greatest  extent 

possible  in  the  choice  of  candidate  predictors. 

c . Objectives 

Within  the  general  framework  of  developing a statistical  model  to 

forecast  thunderstorms  in a 2- to  5-h  period  will  be  the  following 
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objectives:  developing  parameters  for  candidate  predictors  that  are 

consistent  with  known  physical  processes,  parameterization  methods,  and 

interactions  between  systems  of-different  scale,  relating  various  test 

statistics  to  available  verifications of existing  thunderstorm-forecast- 

ing  methods,  developing a way  to  use  the  spatial  variation  of  meteoro- 

logical  variables  to  best  advantage  when  many  independent  variables  are 

involved,  interpreting  statistical  results  in  terms  of  violations  of 

model  assumptions,  assessing  the  influence  of  upper-air  observations 

available  at  3-h  intervals,  and  finding  optimum  times  for  the  dependent 

variable  and  time  changes  for  selected  predictors. 

This  research  will  extend  the  work  of  Charba  (1977)  and  others  in 

several  important  ways.  First,  different  statistical  models  will  be 

evaluated  such  as  principal  component  analysis,  variable  selection,  and 

discriminant  analysis.  Analysis-of-variance  statistics  will  be  examined 

along  with  plots  of  key  parameters  to  determine  the  magnitudes  of 

errors  due  to  assumptions  made  in  the  models.  Secondly,  the  final  model 

will  be  tested  on  an  independent  data  sample.  These  statistics  will 

be  related  to  actual  verifications  of  thunderstorm  forecasts.  Thirdly, 

upper-air  observations  w%ll  be  employed  and  their  importance  to  observed 

(by  radar)  thunderstorms  assessed. A unique  set  of  upper-air  data 

collected  during  atmospheric  variability  experiments  (Fucik  and  Turner, 

1975)  will  permit  calculations  of  upper-air  parameters  every 3 hours 

for  one  day.  These  data  are  available  usually  at  12-h  intervals. 

Finally,  potential  predictors  will  be  calculated  from  the  observed 

variables  in a way  which  will  minimize  intercorrelations  which  exist 

naturally  in  this  type  of  data. 
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As long  as a short-period  forecasting  requirement  exists,  meteo- 

rologists  must  strive  to  produce  the  best  forecasts  possible.  This 

research  will  contribute  to  that  goal,  and  may  also  aid  in  the  underly- 

ing  goal  of  understanding  the  complex  interactions  of  atmospheric 

parameters  which  culminate  in  thunderstorms. 

d. Importance 

Meteorological  data  networks  and  numerical  forecasting  techniques 

are  established  for  the  synoptic  scale  of  atmospheric  analysis  and  pre- 

diction. A true  mesoscale  data  network  is  prohibitively  costly  and 

could  not  be  handled  with  present  computer  systems.  Until  new  observa- 

tional  tools  such  as  Doppler  radar  and  geosynchronous  satellites  are 

perfected  and  automated,  we  are  constrained  in  making  point  forecasts 

of  mesoscale  phenomena  such  as  thunderstorms  with  present-day  data. 

These  data  consist  of 1) hourly  surface  reports  from  stations  spaced 

approximately  150 km apart, 2) hourly  radar  reports  manually  digitized 

from a network  in  the  eastern  two-thirds  of  the  United  States, 3)  satel- 

lite  photographs  at  30-min  intervals  available  at  selected  locations, 

and 4)  12-h  upper-air  observations  from  stations  spaced  approximately 

300 km apart.  Our  task,  then,  must  be  to  extract  as  much  information 

as  possible  from  these  data.  This  is  made  more  realistic,  physically, 

by  the  postulate  that  the  energy  required  to  initiate  the  development 

of  mesoscale  systems  is  contained  within  the  synoptic-scale  systems 

(Global  Atmospheric  Research  Programme,  1972, p. 1). 
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2. STATISTICAL  APPROACH 

The  theory  of  classical  statistical  methods  such  as  least  squares 

and  regression  analyses  is  well  documented  (see,  for  example,  Draper 

and  Smith,  1966;  Morrison,  1976;  Neter  and  Wasserman,  19741,  and  will 

only  be  presented  here  to  the  extent  necessary to facilitate  discussions 

of  model  assumptions,  variable  selection  techniques,  and  results. 

Errors  resulting  from  violations  of  model  assumptions,  and  also  from 

use  of a binary  dependent  variable  and  intercorrelated  independent 

variables  will  be  presented.  We  will  conclude  with  discussions  of  the 

interpretation of results  for a regression  model  and  principal  component 

analysis. 

a.  Linear  models 

Since  the  exact  form of relationships  between  dependent  and  inde- 

pendent  variables  is  unknown, a common  assumption  (and  good  starting 

point)  is  that  of a linear  relationship  of  the  form 

Yi - - Bo + BIXil + P2Xi2 + - + BmXim + E  i' (1) 

In  this  study,  Yi,  the  dependent  variable,  indicates a yes-no  occurrence 

of  thunderstorms  for a given  time  interval  during a day  and  given  com- 

bination  of  grid  points  by  assuming  values  of  one  and  zero,  respectively. 

The  independent  variables,  x's,  are  obtained  from  the  measured  or 

analyzed  observations.  The  error  or  residual  term, E ~ ,  is  due  to  the 

fact  that  the  occurrence  of  thunderstorms  cannot  be  precisely  predicted. 

The @.Is are  the  partial  regression  coefficients  which  relate  observed 

conditions  to  the  occurrence  of  thunderstorms.  These  coefficients 

are  estimated  from  the  data so as  to  minimize  the sums of squared 

3 
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differences  between  actual  and  estimated  values  of  the  dependent  vari- 

able.  Estimates  of  the 's are  denoted  by  This  latter  procedure 

amounts  to  minimizing  the  following: 
j j* 

n A h h 2 - 
i=l 
c (Yi - Bo - BIXil - - - - BmXim) - 

This  term  is  called  the sum of  squares  of  the  errors or SSE. Differen- 

tiating (2) with  respect  to 53 Dl . . . Bm and  setting  each  equal  to A 

zero,  we  get a set  of  Normal 

notation 

Equations  which  can  be  written  in  matrix 

( X ' X ) E  = X'Y, - (3) 

where  capital  letters  are  matrices,  underlined  terms  are  vectors  and a 

prime  denotes  the  transpose  of a matrix.  Here (X'X) is  the sum of 

squares  and  cross  products  of  all  independent  variables  and  is  called 

the  variance-covariance  matrix  since  we  are  dealing  with  corrected  (mean 

subtracted  from  each  observation)  values.  From ( 3 )  one  can  see  that 

can  be  obtained  by  multiplication  of X'Y by  the  inverse, (X'X) -'. The 

partial  regression  coefficients, Bj's, indicate  the  change  in Y associ- 

ated  with a unit  change  in x while  all  other  x's  remain  constant.  The 

fact  that Y is a binary  variable  makes  no  difference  in  these  calcula- 

tions. 

b.  Partitioning sums of  squares 

The  statistical  analysis  continues  by  partitioning sums of  squares 

in  the  fashion  of  analysis  of  variance (ANOVA) to  determine  the  signi- 

ficance  of  the  analyses  as a whole  as  well  as  that  of  individual 

coefficients.  The  total  (corrected) sums of  squares  can  be  partitioned 

as  follows: 
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c(Y-Y)2 = C ( Y  - Bo - BIXil - . . . 'mxim l 2  
A h A - 

A h 

+ c (Bo + BiXil + . . . + BmXim - Y) . A - 2  (4) 

The  term  on  the left is  simply n times  the  variance  of Y or  total sum 

of  squares  (SST).  The  first  term  on  the  right  is  the sum of  squared 

deviations  of  observed  data  from  estimates  based  on  the  model.  It  is 

the  residual sum of  squares of the  errors  (SSE).  The  last  term  repre- 

sents  the sum of  squared  differences  between  the  model  estimates  and 

estimates  when  no  model  is  assumed.  This  is  usually  called  the sum of 

squares  due  to  regression  (SSR). A mean  square  regression  (MSR)  and  mean 

square  error  (MSE)  are  obtained  by  dividing  SSR  and  SSE  by  their 

respective  degrees  of  freedom.  The  partitioning  is  summarized  in  Table 

1. The  ratio  of  MSR/MSE  forms  the  basis  for  the  statistical  F-test  for 

Table 1. Analysis  of  variance. 

Source  of Degrees  of sum of Me  an F 
variation freedom Squares Squares 
~~~ 

Total  n- 1 SST=C (Y-7) " 

Regression m SSR=gX'Y SSR/m  MSR/MSE 

Residual  n-m- 1 SSE=SST-SSR  SSE/n-m-1 " 

" 

an  hypothesis  that  there  is  no  linear  relation  or  that - B=O. Another 

ratio  used  in  regression  analysis  is  the  ratio  of  the sum of  squares  of 

regression  to  the  total  sum of squares,  SSR/SST.  This  quantity  is 

sometimes  called  the  coefficient  of  determination  and its symbol  is 

R . We  can  interpret  R2  as  the  fractional  amount of total  variance 2 
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accounted  for  by  the  linear  combination of variables.  The  significance 

of  individual  partial - 6 ' s  can  also  be  examined,  but  can  be  misleading 

when  x's  are  interrelated;  that  is,  when  it  is  impossible  to  vary  one x 

and  hold  all  others  constant.  This  problem  will  be  examined  in  para- 

graphs d and e. 

c.  Model  assumptions and violations 
1) A linear  model  correctly  describes  the  data. 

The  correct  model  is  not  known.  Even  if  the  model  is  of  the  form 

in  (l),  which  parameters  should  be  included?  Variable  selection  tech- 

niques  aid  in  this  choice  but  do  not  guarantee  that  the  best2  subset 

has  been  chosen. 

Within  the  framework  of  linear  regression  non-linear  predictors  are 

included.  Linear  regression  refers  to  linear  parameters (E's), not 

linear  independent  variables.  It  is  unlikely  that  all  predictors  are 

exactly  linearly  related  to  the  occurrence  of  thunderstorms.  Fortu- 

nately,  in a rather  broad  range  for  many  predictors,  the  linear  approxi- 

mation  is  representative  of  the  association  between  dependent  and 

independent  variables.  We  can  linearize  them,  if  we  choose,  by  replacing 

the  original  variable  by a transformed  version  more  nearly  linearly 

related  to  the  predictand;  however,  we  are  not  sure  about,its  behavior 

when  it  coexists  in  the  model  with  other  predictors.  In  several  attempts 

to  linearize  predictors,  the  overall  improvement  in R2 was  less  than 

3.0%. Also,  once  predictors  are  linearized,  the  equations  are  more 

Best  or  optimum  refers  to  the  maximum  possible  reduction.of  vari- 
ance  that  can  be  achieved  with  the  given  linear  combination  of  variables. 
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d i f f i c u l t  t o  use  in  an  operational  environment.  Finally, other errors 

t o  be discussed  next appear t o  be more serious.   Therefore,   l ineariza- 

t i o n  was not   pursued  in   this   research.  

2 )  The x's are measured  without error. 

We know tha t   t he re  are errors i n  measuring a l l  var iables .  N o t  only 

are there  errors i n  measuring  basic  variables  such as temperature  and 

wind, bu t   a l so   t he re  are errors due to   f ini te   difference  approximations.  

Unfortunately, the or iginal   data   spacing and analysis  procedure limit 

the smallest space i n t e r v a l   f o r  which unique  information is avai lable .  

Measurement error is not a problem in  this   s tudy  because it is  small 

compared t o  the  total  variance of the  x ' s .  For example, the temperature 

error may be 0.5 K whereas the  range of temperature may span 50 K. 

3) The values  of 5 are independent, random, normally-distributed 

variables  with a mean of  zero  and  constant  variance. 

This term is  estimated by residuals  o r  differences between  observed 

and predicted  values f r o m  the  computed l inear   funct ion.  Each item w i l l  

be discussed  separately. 

Independent 5: Meteorological  variables are functions  of t i m e ;  

however, the t i m e  dependency i n   o u r  case is somewhat  masked because w e  

input  data f r o m  a sequence of 36,  30,  30,  36, ... gr id   po in ts  for  suc- 

cessive  days.  In other words,  day 1 contains 36 data  points;  days 2 

and 3 contain 30 points ;  day 4 contains 36 points ,   e tc .   This  scheme is 

a consequence  of  the  data  input  algorithm  and  remained  the same f o r  a l l  

days i n   t h i s   s t u d y .  Also, which t i m e  dependence  (one  day, t w o  days, 

e tc . )  is important?  This  dependence  probably  changes  with  different 

synopt ic   s i tuat ions,  and the   ove ra l l   e f f ec t  i s  masked by other  problems 
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t o  be discussed. 

Randomly d i s t r ibu ted  5: A correc t ly   spec i f ied  model should show 

res idua ls  which are random when plotted  against  an  independent  variable. 

While p l o t s  show d e f i n i t e  non-randomness, it is most l i k e l y  due t o  many 

pecu l i a r i t i e s   r e su l t i ng  from a dichotomous,  dependent  variable. These. 

w i l l  be  discussed  in  paragraph 5. Violations of the  assumption t h a t  5 

is randomly- d i s t r ibu ted  are ca l led   spec i f ica t ion   e r ror  and r e s u l t  from 

not knowing the   cor rec t  model form and not   including  the  correct   var i -  

ables. The res idua l  sums of squares, SSE, is, therefore ,   inf la ted  and 

estimates of regression  coeff ic ients  may be biased. There is no good 

way of  dealing w i t h  t h i s  problem  except to  recognize  possible  nonlinear- 

ities in   p red ic to r s  and include  physically  relevant  parameters. We are 

na tura l ly   cons t ra ined   in  t h i s  l a t t e r  work  by our  f ixed  observational 

networks. 

- E of  constant  variance, mean of zero: It i s  assumed t h a t  E'S a re  

from a single  population  with  zero mean and variance 0 . The  mean is 

zero  but  variance is a function of the x ' s  due to   the   na ture  of the  

predictand  in  t h e  sample used in   this   s tudy.   This   error  is termed 

heteroskedast ic i ty .  

2 

Next, w e  w i l l  cons ider   these   l as t  f e w  problems i n  more d e t a i l .  

5) Special  problems f o r  a dependent,  binary  variable. 

In   addi t ion   to   the   e r ror   o f   spec i f ica t ion ,   there  are several  prob- 

lems unique t o  the use  of a binary  dependent  variable. The first and 

most obvious is that the   e r ro r  term can assume j u s t  two values  depending 

on whether the  predicted  value is subtracted from zero  or  one. Fig. 1 

is a P lo t  of r e s idua l s   fo r  a typ ica l   p red ic tor ,  W ,  which is  pos i t ive ly  
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Fig. 1. Plot of mixing raticj versus residual from regression model. 
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correlated  to  thunderstorm  occurrence.  Each  letter  represents  the 

number  of  observations  corresponding  to  its  position  in  the  alphabet. 

A is  one  observation; 2 represents  26  observations.  Errors  are  clus- 

tered  around  small  negative  values  (when Y is zero)  and  medium  positive 

values  (when Y is  one  and  the  predicted  values  are  weighted  toward 

zero  due  to  the  influence  of  all  the  zero  observations).  Obviously, 

the  assumption  of  normality is not  valid.  The  second  problem is that 

the  variance  of E is a function of x (Neter  and  Wasserman, 1974). 

Finally,  since Y is  similar  to a probability  of  occurrence3,  this 

number  should  lie  between  zero  and  one.  The  regression  response  func- 

i i 

i 

tion  does  not  automatically  possess  this  property. Fig-2 is a plot 

of  residuals  versus  predicted  values  for  the  dependent  sample.  Predicted 

values  range  from  -0.2  to  1.2,  but  the  mean  is  about 0.15. 

Concerning  the  first  problem,  even  though  error  terms  are  not 

normal,  the  least  squares  procedure  still  provides  unbiased  estimates. 

Further,  when  sample  sizes  are  large,  the  distribution  of  estimates  is 

asymptotically  normal so that  inferences  concerning  the  regression 

coefficients  and  mean  responses  can  still  be  made.  Variable  selection 

procedures,  then,  can  still  produce  satisfactory  results  though  little 

mention  of  "significance"  will  be  made  in  this  work.  The  second  problem 

can  be  dealt  with  through  weighted  regression  (Neter  and  Wasserman, 

1974).  Weights  are  assigned  to  observations  in  such a way  that  re- 

sponses  or  predicted  values  near  zero or one  receive  maximum  weight. 

3We  are  trying  to  predict  an  occurrence  which  is  represented  by a 
one  or a non-occurrence  represented  by  zero  in a continuous  fashion. 

17 



.- 

I . 5  

I .o 

0 . 5  

v) 

U 
-I 

3 

v) 
LI 
e 
L 

0 . 0  

- 0 . 5  

- I  .o 

A E  
BC 
EC I 

CGPC 
N Z  T 

G Z Z C  
2 2 2  

K Z Z *  
zz  z 

Y l Z O  
z z x  

E V K G  
H K  J 

OKFC) 
AUO 

C L L F  
I PP 

F Z V O  
M W J  

qLGC 
A A F  

K C A  
8 A  

A 

A L  
C U L  

2 2 2  
z 7 2 i  

Z L Z  
ZZZZ 

z z z  
2 2 2 7  

2 2 2  
ZZ.?.? 

z z z  
Z 2 Z W  

Z Z R  
H S R D  

J L H  
AHFC 

J JG 
@ E  J 

G I F  
AFC4 

C A A  
A A B  

B= 2 OBSERVATIONS 

2=26 ORSERVATIONS 

-0 .4 -0.2 0 . 0  0.2 0 . 4  0 .6 0 . 8  I .o I . 2  

PXEDICTED VALUES OF Y FROM REGRESSION EQUATION 

18 



This  type  of  regression was not  performed  because  the  observations  of 

thunderstorms  are  already  weighted by v i r tue   o f  low climatological 

frequencies  of  thunderstorm  occurrence. A n  attempt w a s  made to   dea l  

with  the problem  through  inclusion  of random samples  of  no-thunderstom 

observations and through  prior  screening  of  no-thunderstorm  cases by 

c r i t i ca l   va lues  of selected  predictors.  The problem  of  predicting 

less than  zero  or  greater  than one is not   par t icu lar ly   se r ious   s ince  

the  threshold  for  forecasting  thunderstorms from predicted  values is 

arbitrary.   Nevertheless,  it appea r s   t ha t   f i t t i ng  a logis t ic   funct ion 

such a s  

Y = (exp(-10.0 + O . l x ) ) / ( l  + exp(-10.0 + 0 . 1 ~ ) )  ( 5 )  

would e l imina te   th i s  problem. Such a function is shown i n  Fig.  3 f o r  

one independent  variable. 

It can  be  linearized by the  simple  transformation, 

Y' = In (Y/ (1-Y)  ) . (6 1 

Special  precautions are required  for  zero  predicted  values.  Note t h a t  

here,   too,  added weight is  given  to  both  near-zero and one predictors .  

Glahn and Bocchieri (1975) used a similar funct ion  in  an object ive 

forecasting scheme and  found d i f f i c u l t i e s   i n  some cases due t o   t h e  

symmetric nature  of  the  curve  and  poor f i t  near  the  threshold  probabil- 

i t y  f o r  yes-no forecasts .  Also, f i t t i n g   t h i s   f u n c t i o n  is not  easy 

unless  there  are  repeat  observations  for  each  level  of x. Such is not 

the  case  with  the  data  used  in this research. 

d. Mult icol l inear i ty  

I 

Another more ser ious problem r e s u l t s  from use  of   interrelated 

predictors  ( x ' s ) .  "he x's are i n   f a c t   r e l a t e d   i n   a t  least three ways. 
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First,  the  basic,  measured  variables  are  related  through  physical  laws 

and  relationships  such  as  the  gas  law,  first  law  of  thennodynamics, or 

thermal  wind  equation;  therefore,  parameters  derived  from  the  basic 

variables  are  related.  This  problem  is  usually  exaggerated  by  using 

the  basic  five  surface  variables  and  five  upper-air  variables  (the 

latter  for  each  of  four  chosen  pressure  levels  in  the  troposphere),  and 

computing  up  to 35 parameters  for  more  than  twice  as  many  points  in 

space  as  there  are  original  data  measurements . Also, several  measures 

of  the  same  basic  dimension,  say  stability,  are  calculated  because 

the  best  measure of stability  is  not  known.  Therefore,  many  more 

variables  than  we  need  are  included.  Secondly,  variables  are  related 

in  space  for  many  hundreds  of  kilometers.  The  very  concept of an  air 

mass  suggests a dependence  for  many  variables.  Finally,  there  is a 

time  dependence  in  that  meteorological  variables  on  one  day  are  cor- 

related  to  those  on  the  next  day  (or  longer). 

4 

The  problem  of  intercorrelated  "independent"  variables  is  called 

multicollinearity  and  for  data  in  this  research  is  severe  enough  to  pre- 

vent  us  from  calculating (X'X) since  near-singularities  exist . -1 5 

Therefore,  we  must  use a variable-selection  technique  to  be  discussed 

in  Section  2e  or a principal  component  analysis  discussed  in  Section  29. 

When an inverse  can  be  computed  and  the  model is correct,  then  the 

regression  coefficients  estimated  by  the  least  squares  technique  are 

4!Chis is a consequence  of  the  analysis  schemes,  and  the  price  paid 
for  trying  to  preserve  as  much  detail  as  possible. 

5A generalized  inverse  can  be  calculated;  however,  the  estimates 
of  the  coefficients  would  be  biased. 
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unbiased.  This means that  the  expected  values computed  from repeated 

samples w i l l  approach  the  correct  value  in  the mean.  The space-cor- 

r e l a t ion  problem is  reduced by use  of  every  fourth  grid  point  in  the 

s t a t i s t i ca l   ana lyses .  

e.   Variable  selection methods and inference 

Fortunately,  the  regression  analysis i s  robus t   i n   t ha t  even  moderate 

deviations from the  assumptions do not   inva l ida te   resu l t s .  The s igni -  

f i c a n t  problem  of mul t ico l l inear i ty ,  however,  can  have severe  influences 

(even c r i t i ca l   i n   ou r   ca se   w i th   a l l   va r i ab le s  where the X ' X  matrix is 

near  singular).  Of  many in te r re la ted   var iab les ,  which should  be  kept 

i n  the model? To deal w i t h  t h i s  problem,  four  different  variable 

selection  techniques were used i n  t h i s   s t u d y ;   a l l   t r y   t o  choose subsets 

of predictors  which  minimize the  res idual  mean square (MSE). They a re  

forward  selection, backward elimination,  stepwise,  and maximum R L 

improvement. 

1) Forward se lec t ion  

This procedure,  often  called  step-up,  begins by choosing  that 

var iable  which is  most highly  correlated w i t h  the dependent var iable .  

The second var iable  is chosen by seeking  the  next most highly  correlated 

of the  remaining  independent  variables  with  the  dependent  variable, 

according to   t he   pa r t i a l   co r re l a t ion   coe f f i c i en t .  I n  other  words, f o r  

each  remaining  independent  variable, a p a r t i a l   F - s t a t i s t i c  i s  calculated 

tha t   re f lec ts   tha t   var iab le ' s   cont r ibu t ion   to   the  model were it t o  be 

included.  If t h i s  s t a t i s t i c   f o r  one o r  more variables  has a " s ign i f i -  

cance level"   greater   than a specif ied amount (0.50 is  used i n  t h i s  
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is repeated and variables added one a t  a  time u n t i l  none passes  the F- 

t e s t   o r  no  more remain. Once a  variable is added to   the  model, it 

must remain  whether or   no t  i ts influence i s  negated by other   var iables  

added.  This  procedure is  l ikely  to   give  near  optimum few-variable 

models, bu t   de te r iora tes   as  more a re  added. 

2)  Backward elimination 

I n  this  technique,  also  called step-down, the   mdel   wi th   a l l   var i -  

ables is considered;  then  variables  are  deleted one a t  a  time s t a r t i n g  

with  the one whose B exhibi ts   the   lowest   F-s ta t is t ic .  Here, w e  a re  

l i ke ly   t o   ge t  optimum many-variable models but poor r e s u l t s  when  more 

and more variables  are  deleted  since  they  can  never be included  again. 

3 )  Stepwise 

This  procedure is a  refinement  of  forward  selection. A t  each s t e p  

before  determining  the  next  variable  to be added, the   F-s ta t i s t ics   a re  

checked for  the  coefficients  already chosen t o   s e e   i f  any should  be 

deleted  based on another  prespecified  "significance  level" ( i n  our  case 

0.1). Only a f t e r  t h i s  check for   de le t ion  is  made can  another  variable 

be  added. The procedure  terminates when no p a r t i a l  F is 2 0.5 or  a 

var iable   to  be  added is  one just  deleted.  This  procedure is  most 

appealing so fa r ;   bu t ,  still an optimum subset is not  guaranteed  (Draper 

and  Smith, 1966). Stepwise is the predominant  procedure  used i n  t h i s  

research. 

4) Maximum R2 improvement 

A one-variable model is chosen as  w i t h  forward select ion.  Then 

every  combination  of  variables  with  this one is examined. When two 

variables  are  included  each of these is compared t o  each variable  not 
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i n   t h e  model. For  every  comparison it is determined i f  removing the 

va r i ab le   i n   t he  model and replacing it with  the  excluded  variable 

would increase R . A f t e r   a l l  comparisons,  the  switch is  made t h a t  

gives  the  highest  R . This  process  continues  with  each  variable  added. 

Optimum one-to-eight  variable models a r e  most l i k e l y   t o  be  found,  but 

t he   cos t s   i n  computer processing  are  high when  more than 20 candidate 

2 

2 

predictors  are  used  (Barr e t   a l . ,  1976) . 
Although variable  selection  procedures do not  guarantee  that an 

optimum subset of predictors  is chosen,  the  stepwise  procedure  does a 

credible  job up t o  about  the  fourth  variable  for  data i n  this study. 

Comparisons  were made of var iables   selected by the  stepwise  procedure 

with  those from the  best   four-  to  seven-variable models  where a l l  

possible  regressions were considered. I n  a l l  cases  the  four-variable 

models  were ident ica l .  The f ive-  and six-variable models d i f fe red  by 

j u s t  one var iable .  The best  seven-variable model d i f fe red  by  two var i -  

ables .  Due t o  computer-processing  limitations,  comparisons were not 

exact i n  that   only  18  of 25 predictors  were cons idered   for   a l l   poss ib le  

regressions. Even f o r   t h i s  combination  there were  31,824 p o s s i b i l i t i e s .  

I n  the  case of the  seven-variable model, the two variables  not  selected 

by the  "best"  procedure were not   avai lable   to  it. Beyond f ive  pre-  

dictors  there  could  be any number of variable  combinations which produce 

the same o r  even s l ight ly   higher  R . Therefore,  discussions  of  variable 

combinations w i l l  usually be l imi t ed   t o   t he   f i r s t   f ou r   o r   f i ve .  

2 

f .   I n t e rp re t a t ion  of regression-model  results 

I n  these  discussions,  intense  convection,  thunderstorm  occurrence, 

and M D e 4  a r e  used  synonymously,  though t h e   l a t t e r  is the   t rue  
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predictand. The coefficient  of  determination, R , the  amount of var i -  

ance accounted for by the l i n e a r  combination  of variables, and reduction 

of   to ta l   var iance  due t o  the  regression model a l s o  are used  synonymously. 

Finally,   independent  variables,   predictors,  and x ' s  mean the  same as do 

dependent  variable, Y,  and predictand. 

2 

Models of form (1) are used where par t icu lar   x ' s ,   parameters ,  are 

chosen by var iab le   se lec t ion   techniques   d i scussed   in   Sec t ion  2e. The 

associated  coeff ic ients ,  B j ' s ,  a re  computed according  to   the least 

squares method (Section 2a). Analysis of variance  tables  such as shown 

i n  T a b l e  1 (p.12) a re  produced for  every  different  combination  of  inde- 

pendent  variables and fo r   a l l   da t a   subd iv i s ions .  A f e w  of  these tables 

for  important  combinations  of  parameters  are shown i n  Appendix A. In  

general ,  however, only summaries are   included  in  the t e x t .  These 

summaries present the t o t a l  R , number of var iables   (x 's)  which pro- 2 

duced the RL, mean squa re   e r ro r   fo r   t h i s  number of  variables,  and 

occurrence  frequency  for t h e  dependent  variable  (frequency  of  thunder- 

storm  occurrence).  Also shown are  the var iab les   se lec ted   in  the order 

i n  which they were chosen, t h e  cumulative R , and the  sign  of the 

pa r t i a l   r eg res s ion   coe f f i c i en t  (8 )  f o r  each data s t r a t i f i c a t i o n .   I n  

order   to   reconstruct   the   l inear   equat ion  for  a given  combination  of 

var iab les ,   the   par t ia l   regress ion   coef f ic ien ts  from  Appendix A are 

required.  These  coefficients are then   subs t i tu ted   in to  (1) together 

w i t h  their respect ive  predictors .  

2 

Although R w i l l  be d iscussed   to  some extent ,   the  R differences 2 2 

from sample t o  sample  must no t  be i n t e r p r e t e d   t o  imply  improved re- 

gression  results  unless  the  proportion of  ones  (as  opposed to   ze ros )  is 
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a l so  the same. For a binomial   dis t r ibut ion the variance is given by 

np(1-p).  Since  this term appears i n  the denominator  of R , an  increased 

p (up t o  0.5) results i n  a lower R2 given  the same regression sum of 

squares. Three examples  follow,  each  using similar but  a r t i f ic ia l  data 

L 

with  one  independent,  continuous  variable  positively  correlated t o  one 

dependent,  dichotomous  variable. 

1) Example one : occurrence  frequency 10% 

Assume there  are ten  observations  of  dependent  variable y and 

independent  variable x and tha t  the  frequency of ones is  10%. The data  

and regression  analysis are shown i n  T a b l e  2. 

Table 2. Data and regression  analysis €or 10 observations  of hypo- 
the t ica l   var iab les  x and y with 10% occurrence  frequency. 

0 -0.1 0.01 2 -1 

0 -0.1 0.01 2 -1 
0 -0.1 0.01 2 -1 

0 -0.1 0.01 3 0 
0 -0.1 0.01 3 0 

0 -0.1 0.01 4 1 
0 -0.1 0.01 2 -1 

0 -0.1 0.01 3 0 
1 0.9 0.81 5 2 

0 -0.1 0.01 4 1 

1 
1 

0 
1 

0 
1 
1 

0 
4 

1 

1 0.30 30 10 

0.1 
0.1 
0.1 

0.0 
0.0 

-0.1 
0.1 
1.8 
0.0 
-0.1 

0.01 

0.01 
0.01 

0 .oo 
0 .oo 
0.01 
0.01 
3.24 
0.00 
0.01 

3.30 Sum 

SST = L C Y - ~ ) ~  = 0.9 

- x = 3 . 0 ;  y - = 0.1 = p 

2 )  Example  two: occurrence  frequency 30% 

T a b l e  3 i l lus t ra tes   another  example with  the same sample s i ze   bu t  

different  occurrence  frequency. Note t h a t  as the occurrence  frequency 

increases,  R decreases. This  decrease is a consequence  of the  in- 

creased  variance  of y (higher p) . 
2 
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Table 3 .  Data  and  regression  analysis  for 10 observations  of  hypo- 
thetical  variables x and y with 30% occurrence  frequency. 

y y-y (y-? x x-x (x-;) (x-;) ( y - 3  [ (x";;, (y-71 l 2  
- - 

Surrmary Statistics 
"~ _ l _ ~ " .  ____" - - r 

0 -0.3  0.09 2 -1 
1 0.7 0.49 4 1 

1 
1 

0.09 
0.49 

1 0.7 0.49 4 1 1 0.7 0.49 

0.3 
0.7 SSR = z [ (x-x) (y-y) 1 

- - 2  

L (X-m 2 = 0 .29  

0 -0.3 0.09 2 -1 
0 -0.3  0.09 3 0 

1 
0 

0.3 0.09 
0 0 

0 -0.3  0.09 4 1 1 
0 -0.3 0.09 2 -1 

-0.3 
I. 

0.09 
0.3 0.09 

1 0.7 0.49 5 2 4 1.4 1.96 
0 -0.3  0.09 2 -1 1 
0 -0.3 0.09 2 -1 1 

0.3 
0.3 

0.09 - 
0.09 

SST = ( Y - Y ) ~  = 2 -10 

2 SSR 
SST R = - = 0.138 

- 
x = 3.0; y = 0.3 = p 

3 2.10 30 12 3.48 sum 
. -. , "" __r"-__-~- 

3)  Example  three:  random  sampling 

We  will  now  consider  the  effect  of  random  sampling  on R2 in 

Table 4. Table 3 is  duplicated  for  all  occurrences  but  for  only 57% 

of the  nonoccurrences. 

Table 4 .  Data  and  regression  analysis  for 57% of nonoccurrence 
observations  in  Table 3 data. 

- 

y ( Y - 3  W-y) x x-x ( x - Z 2   ( x - 3  (y-7) I (x-X) (y-y) 1 - 2  - - 2  
Summary Statistics 

0 -0.429 0.184 2 -1.143 1.306  0.490  0.240 
1 0.571 0.329 4 0.857 0.735  0.489 
1 0.571 0.326 4 0.857 0.735 

0.230 
0.489  0.239 

0 -0.429  0.184  3  0.143 0.020 -0.061 
0 -0.429  0.184 2 -1.143  1.306  0.430 

0,004 
0.240 

1 0.571  0.326  5  1.857  3.449 
0 -0.429  0.184  2  -1.143 1.306 0.490 

1.060 
0.240 
1.124 

3 1.714 22  8.857 2.328 Sum II 

Table 5 shows  the  comparison of pertinent  statistics  for  the 

different  occuxrence  frequencies  and  the  random  sample.  In  the  case  of 

the  random  sample, sums of  squares of x's  decrease  relative  to  the 

other  cases  because x increases.  Total sum of squares, z(y-3 , 2 

decreases  compared  to  the 30% sample  in  this  case  because  there  are 

fewer  elements  to sum. Finally,  the  squared sum of cross  products 
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Table 5. Comparison of Tables 2, 3, and 4.  

Term  Table 2 Table 3 Table 4 
10% ones 30% ones  Random (43% ones) 

- 
X 2 3.0 3.0 

c (x-3  10 .o 12 .o 
0.1 0.3 

c (Y-9 0.9 2.1 
c ( x - 3  (y-3 1 3.30  3.48 

- 
y 2  

SSR 0.330 0.290 
R2 0.367 0.138 

MSE 0.071 0.226 
n 10  10 

3.140 
8.857 
0.429 
1.714 
2.328 
0.263 
0.154 
0 -289 
7 

decreases  but at  a slower  rate  than in Table 3. Consequently, R in- 2 

creases  for  the  random  sample  compared  to  the 30% case. It is  clear 

from  these  examples  that R2 cannot  be  used  as a measure of relative 

strength of the  regression  model  when  the  frequency  of  occurrence 

changes.  The  only  true  measure  of  "goodness"  will  be  the  performance 

of  the  function  in  an  operational  environment. 

g. Principal  component  analysis 

Another  way  to  approach  the  multicollinearity  problem  is  through 

a technique  called  principal  component  analysis  first  introduced  to 

meteorology  over  two  decades  ago  by  Lorenz (1956). Brier  and  Meltesen, 

(1976) give a brief  history of meteorological  applications.  Only a 

summary of the  methodology  will  be  presented  here. 

Assume  that  new  variables,  principal  components  (Ci),  can  be 

generated  that  are  linear  combinations  of  observations  of  original 

variables  as  follows: 
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'1 - bl,lxl + b1,2X2 + + bl,mxm 

- + b2,mxm 

- 

C2 - - b2 , 1 ~ 1  + b2 , 2 ~ 2  + . 

Cm - - bm,l~l + b2,m~2 + .. - + bm,mxm 

(7) 

Also choose  coefficients  for  Ci  i.e.  bij's so that  the  variance  of  C 

is  as  large  as  possible.  Choose  the  C,  coefficients so that  the  vari- 
1 

ance  of  C  is 

servations  of 

2 

C. and  impose 

any  Ci sum to 

1 

L 

as  large  as  possible  subject  to  the  constraint  that  ob- 

C be  uncorrelated  with  those  of C2. We  continue  for  all 

an  additional  restriction  that  squares  of  coefficients  in 

1 

one.  It  turns  out  (Harris, 1975) that  if  the  eigenvalues 

and  eigenvectors  of  the  X'X  matrix  are  found  (since  it  is  real, 

symmetric,  and  positive  definite),  then  the  assumptions  are  fulfilled. 

Also, the  components  of  the  eigenvectors  normalized  to  length  one  are 

the  bij's. 

Since  the  variance  is  just  a  measure  of  the  variability  for 

different  observations,  it  is  reasonable  to  interpret  C  as  that  linear 

combination  of  original  variables  which  maximally  discriminates  among 

our  observations.  These  components  also  partition  the  total  variance 

of  the  original  variables  into  m  additive  parts,  hence,  the  interpreta- 

tion  that  they  "account  for"  a  certain  fraction  of  the  tatal  variance. 

Rows  (or  columns)  in  the  symmetric  (X'X)  matrix  which  are  linear  combi- 

nations  of  each  other  will  produce  a  zero  eigenvalue  and  will  contribute 

nothing  to  the  total  variance;  hence,  we  have  another  way  of  assessing 

multicollinearity  and  of  finding,  possibly,  how  many  true  dimensions 

or  hypothetical  latent  variables  there  are  in  the  particular  (X'X) 

matrix  which  is  evaluated  in  this  manner.  It  is  this  property  which 

1 
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has  led to recent  applications  in  meteorology ( S m i t h  and  Woolf,  1976; 

Brier  and  Melteson,  1976). A method  for  calculating  eigenvalues  is 

given  by  Essenwanger  (1976).  The  procedures  used in this study  are 

those  available  in  the  statistical  analysis  system (SAS) (Barr, ” et al., 

1976) . 

30 



3 .  DATA  SEIZCTION AND PROCESSING 

a.  Location 

The  area  for  this  study  was  chosen  to  provide  relative  homogeneity 

in terrain,  an  adequate  sample  of  meteorological  observations,  and  as 

many  thunderstorm  occurrences  as  possible  during  the  time  digital 

radar  data  were  available.  The  period  chosen  included  April  through 

July 1974 and  1975, 30 days  in  each  month.  Surface,  upper-air  and 

meteorological  radar  data  were  used  in  the  analysis.  Each  will  be 

discussed  separately. 

b . Surface  data 

Altimeter  setting,  wind  speed,  wind  direction,  temperature,  and 

dew  point  temperature  were  obtained  for 97 locations  as  shown in Fig. 4 

for  five  times  each  day:  1200,  1500, 1600, 1700,  and 1800 GMT. 

c.  upper-air  data 

Observations  of  geopotential  height,  temperature,  dew  point  de- 

pression,  wind  speed,  and  wind  direction  at  1200  GMT  were  used  for  each 

of  four  standard  pressure  levels:  850,  700,  500,  and 300 mb . There 6 

were  14  upper-air  locations  (Fig. 4). Both surface  and  upper-air  data 

were  obtained  from  the  USAF  Environmental  Technical  Applications  Center 

at  Scott AFB, IL. 

d.  Radar  data 

Radar  data  consisted of manually  digitized  radar (MDR) observations 

60nly  geopotential  height  and  winds  were  utilized  for  the 300-rnb 
leve 1. 
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Fig. 4. Data reporting  locations.  



f o r  each  hour  from 1630 t o  0130 GMT and for 187 boxes. shown within  the 

bold   l ine   in   F ig .  5. Note tha t   t he   cen te r s  of these boxes f a l l   w i t h i n  

the  general   area  outl ined  in  Fig.  4 (p.  32).  These  data were provided by 

NOAA's Techniques Development Laboratory.  liadar  observations are usually 

taken  about 30 t o  35 min past each  hour  and  transmitted  in coded  form 

(Table  6)  (Foster  and Reap, 1973).  Digital  codes  represent the maximum 

T a b l e  6.  Explanation  of  Manually  Digitized Radar (MDR) code 

Maximum  Maximum 
0 served Coverage Rainfa l l   In tens i ty  

Code  No. V I P  Values  In Box Rate  (in./hr)  Category 51 
0 

. .  

N o  Echoes 

1  1 Any V I P 1  < -1 Weak 

2 2 5 50% of V I P 2  -1- - 5  Moderate 

3 2 50% of V I P 2  .5-1.0 Moderate 

4 3 S 50% of VIP3 1.0-2-0 Strong 
5 3 > 50% of VIP3 1.0-2.0 Strong 

6 4 < 50% of VIP3 1.0-2.0 Very Strong 
and 4 

7 4 > 50% of V I P 3  1.0-2.0 Very Strong 
and 4 

8 5 or 6 5 50% o r  VIP3, > 2.0 Intense  or  
4 ,  5 ,  and 6 Extreme 

9 5 o r  6 > 50% or  V I P 3 ,  > 2.0 Intense  or 
4,  5 ,  and 6 Extreme 

" ." " - . ~ ~ 
." ~~ 

I Video Integrator  Processor 

i n t ens i ty  of r e f l e c t i v i t i e s  anywhere i n  a  square  area  approximately 85 

km on a  side.  These  codes also  take  into  account  the  general  area 

coverage  of  the  echoes. T ime  composites f o r   t h e  maximum code i n  any 

of  the  following  groups were saved  for  each day: 1635-1735, 1835-1935, 

1935-2235, and 2235-0135 GMT. These w i l l  be ca l led  1700-1800 GMT,. 
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Fig. 5. Manually  digitized  radar  grid. 
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1900-2000 GMT, 2000-2300 GMT and 2300-0200 GMT periods,   respectively.  

Radar data  had t o  be  grouped by time  intervals  to  obtain  an  adequate 

sample  because many hours  of  observations were missing.  There  are 

several  reasons  for  the  specific  groupings. The f i r s t   i n t e r v a l  is t o  

be  used  as a candidate  predictor. The l a t t e r   t h r e e  were a l l   p red ic tands  

and were formulated  from  operational  considerations. A 3-h in t e rva l  

represents a forecast  of  thunderstorms  valid wi th in  1.5 h of  an e s t i -  

mated t ime  of   a r r iva l   for   a i rc raf t   f l igh t   opera t ions .  For  example, an 

aircrew may obtain a weather  briefing a t  1830 GMT f o r  a  5.5-h f l i g h t  

with  departure  time  estimated  to  be 1900 GMT and estimated  arrival  t ime 

a t  dest inat ion of 0030 GMT. A forecast   for  intermittent  thunderstorms 

would cover  the  period from 2300 t o  0200 GMT. This  i n t e rva l  is  reason- 

able owing to   operat ional   uncer taint ies   such as delays i n  departure and 

landing  for  long  f l ights and to   uncer ta in t ies  i n  predicting  the  thunder- 

storm  event so long i n  advance. The 1-h i n t e r v a l   a t   t h e   e a r l i e r   t i m e  

reflects  both  reduced  forecast  and operational  uncertainties  because of 

the  short   forecast   lead  t ime and brief  flying  time. For  example, a crew 

for  a 1-h f l i g h t  may ge t  a weather   br ief ing  a t  1800 GMT for  estimated 

a r r i v a l   a t  1930 GMT. The forecast  would then cover  the  period from 

1900 t o  2000 GMT. F i n a l l y ,  an  attempt w a s  made t o  avoid  overlapping 

in t e rva l s  so that  forecasts  for  the  different  t imes  could be compared. 

e. In i t ia l   p rocess ing  

Raw data  were avai lable  on magnetic  tapes. Programs  were wri t ten 

t o  (1) select   specific  observed  elements,   t imes,  and s ta t ions ;  (2 )  ensure 

a l l  missing  hours and days were accounted  for;  (3) check for  gross 

e r ro r s  i n  reported  values; and (4) wri te   a l l   da ta   on to  a d i rec t   access  
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storage  device.  Observations  that were either  missing or which con- 

tained numbers outside  the  range  of what  would be  considered  reportable 

values   for   that   var iable  were f i l led  with  zeros  and ignored  in  subse- 

quent  processing. Many observations were checked against   archived 

teletype  data  to  ensure  accuracy. 

f . Objective  analysis 

The r e s u l t s  of th i s   research  were dependent upon the  representative- 

ness  of raw data  interpolated  or  analyzed  onto an equally-spaced  grid 

system.  Therefore,  considerable  care was taken  in  choosing an analysis  

procedure  and  grid. An 18 x 18  array  of  grid  points  spaced 65 km 

apar t  was chosen to   preserve  as  much d e t a i l  i n  the  surface and radar 

da ta   f ie lds   as   poss ib le .  Boundary points  were used  only for  the  calcu- 

l a t i o n  of der ivat ives  so that   only 256 points  (16 x 16) were  used fo r  

s t a t i s t i c a l   c o r r e l a t i o n s .  An analysis  scheme by Barnes (1964) was 

selected,   not  only  because  results  obtained were very  s imilar   to  hand 

analysis,   but  also  because  scales of atmospheric  features  retained by 

this  technique  could  be  determined, and the program was e f f i c i e n t .  Scan 

r a d i i  and ini t ia l izat ion  procedures  were adjusted  to  produce  an optimum 

balance among the  following: (1) cost ,   s ince we had  12,480 t o t a l  

analyses t o  perform ; ( 2 )  missing  data; ( 3 )  amplification o f  spurious 

waves; (4)  small-scale  surface  features;  ( 5 )  radar   gr id   t ransposi t ion;  

7 

and (6) duplication of manual analyses. The optimum choice  for  scan 

7240 days x (5  surface  variables x 5 times + 5 upper-air  variables 
x 3 l eve l s  + 3 upper-air  variables x 1 leve l  -k 1 radar   var iable  x 9 
times) . 
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radius,  number  of  iterations,  and  characteristic  wave  lengths  preserved 

as a result of these  choices  are  summarized  in  Table 7. Wind  was  con- 

verted  to  components  with  respect  to  grid  orientation  (nearly  latitude- 

longitude  aligned).  These  and  all  other  basic  variables  were  analyzed 

onto  the 18 x 18 grid  array  for  each  time  and  day.  From  these  data  the 

predictand  and  candidate  predictors  were  computed  at  each  grid  point 

as  discussed  in  the  next  Section. 

Table 7. Summary  of  analysis  parameters. - _ ~ - .  "" .. "" . _"._ ." 

source 
Data Average data Scan I t e r a t i o n s   I n i t i a l i z a t i o n  Wavclength of Wavelength of 

Spacing  Radius 909 amplitude 50% amplitude 
Preservation  Prcservation 

I"_ -. 
Surface 120 km 275 km 3 Mean value of 450 km 300 km 

parmeter 

Uppcr a i r  370 km 5 2 0  km 3 Mean value of 900 km 600 km 
parmeter 

Radar 8 3  km 84 km 1 0 

t 
With one i t e r a t i o n   t h i s  was e s s e n t i a l l y  an i n t e r p l a t i o n  of the   nearest  MDR observation to 

each  grid  point .  
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4. PARAMETERIZATION AND DATA  SUBDIVISION 

This  section  includes  the  formulation  of  predictands  and  the 

development  of  predictors  in  the  context  of  parameterization  of  synop- 

tic  observations.  Also  discussed  is  the  subdivision  of  the  total  data 

set  into  subsets for  statistical  processing. 

a.  Predictand  formulation 

Coded MDR data  from  the 65-km grid  and  three  time  groups,  1900-2000 

GMT,  2000-2300 GMT, and  2300-0200 GMT, were  converted  to a simple  binary 

form.  Any MDR code  equal  to  or  greater  than four at  any  of  the  four 

nearest  neighbor  grid  points  as  shown  in  Fig. 6 was  assumed  to  repre- 

sent  the  occurrence of a thunderstorm  (Mogil,  19741,  and  was  assigned 

the  binary  code  one;  otherwise  code  zero  was  assigned.  The  data  void 

areas  in  this  figure  result  from  the  use  of  every  fourth  grid  point  for 

the  statistical  analyses. A zero  could  only  be  assigned  if  the  grid 

point  in  question  and,  the  nearest  neighbors  were all reporting MDR 
codes  less  than  four.  The  best  resolution  in  the  predictand  area  is 

limited  to a square  area  about  138  km  on a side.  This  was  the  smallest 

area  for  which  unique  information  from  the  original  radar  grid  (83  km 

square)  was  available.  We  have  not  distinguished  among  precipitation 

intensities  (or  thunderstorm  severities)  in  this  study. 

b.  Predictor  formulation 

One  approach  now  tempting  many  investigators  because  of  expanded 

computer  capabilities  is to use  every  imaginable  parameter  as a candi- 

date  predictor.  For  just  the  basic  analyzed  variables  (temperature, 

wind  components,  pressure,  etc.)  along  with  their  first  and  second  time 
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and  space  derivatives,  there  would  be  well  over 100 candidates,  many 

of  which  would  be  interrelated.  Selection  techniques  for  such a large 

number,  not  even  counting  products  or  time  changes of space  derivatives 

and  vice  versa,  would  be  expensive  and,  more  important,  results  would 

be  extremely  difficult  to  interpret.  In  this  study  all  predictors  have 

been  chosen  through  parameterization  techniques  for  categories  of  vari- 

ables  known  to  be  associated  with  thunderstorms. 

It  is  generally  recognized  that  there  are  three  synoptic-scale 8 

conditions  for  thunderstorms:  moisture,  potential  instability,  and a 

trigger  mechanism.  Therefore,  parameters  to  represent  these  ingredients 

were  calculated  from  centered  finite  differences  for  which  the  distance 

interval  was  twice  the  grid  distance  or  130  km.  In  addition, a nine- 

point  Laplacian  routine  for q 2 A  was  used,  where A is  any  scalar.  All 

parameters,  along  with  their  definition  and  source,  are  shown  in 

Table 8. Each  group  will  be  discussed  separately. 

1) Moisture 

The  first  set  of  moisture  variables  includes  the  equivalent 

potential  temperature (0 ) at  several  levels  in  the  atmosphere,  its 

time  change,  gradient  magnitude,  and  advection.  This  parameter  has 

e 

been  used  for  many  years  as a means  of  identifying  air  samples  owing 

to  its  conservative  properties  for  both dry and  saturated  adiabatic 

processes.  It  has  been  used  recently  in  conjunction  with the location 

of the  thunderstorm  updraft  (see,  for  example,  Ellrod  and Mamitz, 1976; 

Fankhauser,  1974;  Brandes,  1977).  High  values  of 0 represent a e 
~~~~~ ~ 

*The  data  network  restricts  the  horizontal  scales  to  300  to  1500  km. 
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Table 8. Candidate  predictors 

(a)  Moisture  Parameters 

Symbol &f inition  Source  Time 

'e 0 [exp  (LWs/C TI 1 Surf  ace 1800 P 
0 
e8 

same  except  850 mb values  Upper  air 1200 

0 
e7 

at 

same  except 700 mb values  Upper  air 

Oe (1800 GMT) - Oe (1500  GMT)  Surface 

[? - (Oe (1500  GMT)-Oe  (1200  GMT) ) ] Surface 

Surf  ace Id0 I e 1800 

Surf  ace OeA 1800 

T- T d T-Td  Surface 

same  except  850 mb values  Upper  air 

1800 

1200 

same  except  500 &I values  Upper  air 1200 

0.622e/P-e  Surf  ace 

e = (6.11110 

P = -1013.25 + 1013.25/(1.0-a(z)) 

7.5(Td-273.18)/Td-35.86 

b 

+ALTSTG,  where  a(z) = .0065z/288.0, 
b = 5.246 

W 1800 

'8 

w7 

1 iswl 
g2W 

same  except  for  850 mb Upper  air 1200 

1200 

1800 

1800 

1800 

1800 

Upper  air 

Surf  ace 

Surf  ace 

Surf  ace 

same  except  for  700 mb 

MDIV 

ID1 aw a~ aw av 2 aw aU aw av 2 Surface 4% a~ ay  ay ax ay ax + "-1 +(- + - -) 
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Table 8. Candidate  predictors  (Continued) 

(b) S t a b i l i t y  

Symbol Definit ion Source Time 

DTA 

CSIL 

CSIM 

KI 

TTI  

STSI 

UWSH 

DTH 

$2 THA 
P 

T 

0 

T8 + T -(T-T ) 
d8 d 7  - T5 

u "u 5 8 

(Z8-Z7) /150 - (Z7-Z5) / 200  

Temperature 

T (lOOO/P) R/cp 

Upper a i r  

Upper a i r  

Upper a i r  

Upper a i r  

Upper a i r  

Upper a i r  

Upper a i r  

Upper a i r  

Upper a i r  

Surface 

Surf ace 

1200 

1200 

1200 

1200 

1200 

1200 

1200 

1200 

1200 

1800 

1800 
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Table 8. Candidate  predictors (Concluded) 

Symbol 

wTS 

q2P 

5 

DVA 

I D I V  

IMDIV 

I G5 I 
V 5 

VSUM 

I?Pl 

f - ?P 
a ( $ 2 ~ )  

a t  

MDRP 

" 

Definition  Source Time 
-~ ~~ - - . 

a2p a2P w+ayz 
"- av aU 
ax ay 

( - G 4  5) - 
P 5  

2.25($  -$)8 + 1.75($p*;)7 + 1.0(? 
P  P 

500 m b  N-S wind  component 

v + v  5 8 

q2P(180O GMT) - q2P(150O GMT) 

MDR code > 1 a t  1700 o r  1800 GMT 

Surf  ace 

Surf  ace 

Surf  ace 

Upper a i r  

Upper a i r  

Upper a i r  

Upper a i r  

Upper a i r  

Upper a i r  

Surface 

Surf  ace 

Surf  ace 

Radar 

1800 

1800 

1800 

1200 

1200 

1200 

1200 

1200 

1200 

1800 

1800 

1500) 
'1800 

1700) 
'1800 
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potential,  latent  energy  source  (warm  moist  air)  for  the  convective 

process. 

Next,  basic  measures of low-level  relative  humidity  are  included. 

These  are  expressed  as  dew  point  depressions.  The  last  group  of  mois- 

ture  parameters  are  basic  measures  of  atmospheric  water  vapor  content. 

The  mixing  ratio  has  been  combined  with  the  divergence  field  of  surface 

wind  in 6-WV so that  moisture  advection  and  convergence  are  included -t 

in a single  term.  This  has  been a leading  predictor  in  other  studies 

(Charba,  1977;  Alaka " et al.,  1973;  Henz,  1974).  The  Laplacian  of  mixing 

ratio  identifies  centers  of  high  moisture  (negative  Laplacian). A 

term  which  combines  both  the  deformation  field  of  the  wind  and  surface 

moisture  pattern  has  been  introduced  in  \Dl.  This  is  similar  in  form 

to  the  frontogenetic  function  of  Petterssen  (1956,  p. 201) with 0 re- 

placed  by W and  is  discussed  in  Palm&  and  Newton  (1969,  p. 246) .  It 

is a way  of  locating  where  shear  and  confluence  of  surface  wind  could 

concentrate  moisture.  Fig. 7 shows  schematically  how  this  might  be 

accomplished.  Prime  quantities  represent  isolines  after a time  incre- 

ment  At.  The  lines  of W' in  Fig.  7a  have  been  shifted  to  the  left  for 

convenience.  Consider  the  magnitude of ?W. As - decreases , I?Wl in- 

creases.  Similarly, as - decreases, I?W) increases. 

aLl 
aY 

aV 

aY 
2) Stability 

There  are  numerous  ways  of  estimating  atmospheric  static  stability. 

Differential  temperature  advection  where  cold  air  is  advected  over  warm 

air  or  vice  versa  is a way  of  incorporating  kinematics  (wind-structure) 

and  time. So long  as  the  advection  is  constant  with  cold  advection 

above  warm  advection,  the  atmosphere  will  respond  by  decreasing  stability 
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EAST-WEST DISTANCE (X)(km) 
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( 4  decreasing W INITIAL ISOLINE 
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EAST-WEST  DISTANCE (X) (km) 
(b) * decreasing 

I vw I increasing 
aY 

-+ 

Fig. 7. Schematic  illustration of isoline  concentration by (a) shear 
and (b) confluence. 
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with t i m e .  Similarly,   the  horizontal   temperature  gradient is r e l a t ed  

t o   t h e   v e r t i c a l  wind shear and differential   temperature  advection w i l l  

be ref lected  in   adjustment  of the   th ickness   f ie ld .  Both  wind shear 

and.thickness  differences  have  been  included. The Laplacian of thick- 

ness  advection  should  be a way of   locat ing  centers   of   s t rong  different ia l  

temperature  changes  which, i n  a subsequent time interval,   could  be 

related  to  thunderstorm development.  Convective i n s t a b i l i t y  is impor- 

tant   to   thunderstorm development (Koch, 1975).   This  type  exists  in the 

atmosphere in   those   l ayers  where 0 decreases  with  height.  There a r e  e 

three  parameters  in which a f in i t e   d i f f e rence   ve r s ion   o f   t h i s  term are  

included. The last of these i s  static s tab i l i ty   d i scussed  by Paine 

and Kaplan (1974) .   Final ly ,   s tandard  parcel   s tabi l i ty  measures  and 

surface  values  of  temperature and potential   temperature were used. 

3)  Trigger mechanism 

Many days  occur when suff ic ient   moisture  and ins tab i l i ty   a re   bo th  

present and y e t  there are no thunderstorms. A t r i g g e r  mechanism is 

needed t o   r e l e a s e   t h e   i n s t a b i l i t y  and la tent   energy.   Usual ly ,   th is  

t r i gge r  is manifested  in  vertical   motion, so t h a t  w e  need t o   f i n d  a 

l i f t i n g  mechanism. Terrain-induced  vertical  motion i s  included  as a 

predictor  combined with  surface  velocity  divergence. The v o r t i c i t y  

f i e l d   a t   t h e   s u r f a c e  measured by the v e r t i c a l  component of   the  cur l   of  

the surface wind f ie ld   or   indirect ly   through  the  pressure  Laplacian is  

ano the r   po ten t i a l   up l i f t  mechanism through  convergence which it induces. 

Fronts are frequently  associated w i t h  thunderstorms. A f r o n t  can be 

identified  through the wind,  temperature,  moisture, and pressure 

f ields.  Temperature,  moisture,  pressure  gradients and the  advections 

46 



of @ and P were included as parameters. Measures of v e r t i c a l  motion 

can be  obtained  in  only a crude way from data  a t  j u s t   f i v e   l e v e l s   i n  

t he  atmosphere. Both integrated  divergence (sums of divergence  for 

th ree   l eve ls )  and integrated  moisture  divergence were included  as 

predictor   parameters .   Different ia l   vor t ic i ty   advect ion (DVA) i s  in- 

cluded as a parameter  since it together  with  the  Laplacian of thickness 

advection, are the t w o  terms i n   t h e  w-equation  (Holton,  1972). The 

meridional wind component a t  500 m b  i s  a measure  of the  strength  and/or 

proximity  of an approaching  trough i f  a general  w e s t  t o  east wave 

motion exis ts .   Vort ic i ty   advect ion and v e r t i c a l  motion usually  ensue. 

The v-component sum a t  850 and 500 m b  measures the  degree  to which the  

wind is  in-phase a t   t h e s e  two l eve l s   ea s t  of a trough. The  more out-of- 

e 

phase,   the  lower  this sum would be;  therefore,  one would be  looking a t  

a measure of the  baroclinity  of  the  lower  atmosphere. A negative  cor- 

r e l a t i o n  of this parameter measured a t  1200 GMT with  thunderstorms 

l a t e r   i n   t h e  day would be  expected.  Finally, an increased  tendency  for 

cyclogenesis a t   t h e   s u r f a c e  may be  associated  with  general   uplift   and, 

therefore ,  a t r i gge r  mechanism for  subsequent  thunderstorms. The t i m e  

change of the  Laplacian of the  surface  pressure,  - (v p ) ,  i s  one 

such  indicator. 

a +2 
a t  

The l a s t   t r i g g e r  shown i n  Table 8 is a binary  radar  parameter. Any 

MDR code (two or   greater)   dur ing  the t i m e  period 1700 t o  1800 GMT f o r  

each  grid  point was coded as one; otherwise,  zero w a s  ass igned.   In   this  

way a one  represents any precipitation  occurring  near  the t i m e  the  fore- 

c a s t  is t o  be made. Usually, when other  conditions are r i g h t ,  any pre- 

c i p i t a t i o n  a t  t h i s  t i m e  of t he  morning either  maintains i ts  in t ens i ty  
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by propagating  within  the  predictand area when the  code is already 

greater   than  four ,  or develops  into a thunderstorm in  the  subsequent  

2 t o  5 h.   This  predictor is the only   d i rec t  measure  of v e r t i c a l  motion 

o r   t r i g g e r  among a l l  pred ic tor  parameters. O f  course, some of the  para- 

meters  could  contribute  to more than one condition  for  thunderstorms. 

Consider,  for  example,  the  discontinuity  function, I D I ;  wh i l e   l i s t ed  

under  moisture, it might  also be discussed  in  conjunction  with  the  dry 

l i n e  and frontogenesis  or a t r i gge r  term. Similarly,  the  Laplacian 

of  thickness  advection is  a t e r m  i n  both  the  w-equation and Pe t te rssen ' s  

development  of surface  vort ic i ty   tendency.  It  could  be shown with  the 

t r i gge r  terms a s  w e l l .  

c .   Subdivision  of  original  data - 
The t o t a l   d a t a  s e t  consists  of  parameters  calculated  at   each of 

256 g r id   po in t s   fo r  240 days. However, for   reasons  discussed  in   Sect ion 

3 ,  not  every  grid-point w a s  used.  There were a t o t a l   o f  7680 observa- 

t i ons   poss ib l e   i n   t he   da t a  set  used  for  subsequent statist ical  analysis.  

However, an observation which contained any missing  element w a s  not 

used. The data were then  subdivided  into  groups as shown in   F ig .   8 .  

1) Developmental  and tes t  

Subdivision  of  the  original  data set into  developmental and test 

groups w a s  necessary so that some type of qua l i ty  measure o r   ve r i f i ca -  

tion  could  be  obtained. Every t h i r d  day i s  considered  to  be  independent 

for  temperature  (Panofsky and Brier, 1958).  Therefore,  data  in  every 

t h i r d  day  (day  one,  day  four,  day  seven, ... 1 were used a s  a test sample. 

The developmental  sample  included  data i n   a l l   o t h e r  days. As f a r  as 

thunderstorms were concerned,  the  assumption  of  independence w a s  
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Subdivision of total  data  set. 
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examined f o r  a few g r i d   p o i n t s   i n  the tes t  sample. Ones were not ob- 

served f o r  two consecutive  periods (day  one  and  day four, €or  example). 

The developmental  sample w a s ,  therefore,  considered to  be the  dependent 

sample; t h e  test data  set w a s  the  independent sample. Equations were 

developed  from statistical models applied  to  the  developmental  sample 

and t e s t ed  on the test sample. 

2 )  North wind and south wind 

Thunderstorms are  observed  to  develop  and  behave somewhat d i f fe ren t -  

l y   i n   d i f f e r e n t   t y p e s  of s y n o p t i c   s i t u a t i o n s   o r   i n   d i f f e r e n t   a i r  masses 

(Purdom, 1975).  Subdivision by a i r  mass may g i v e   b e t t e r   r e s u l t s   i n  this 

type  of statist ical  analysis  where the sample  includes  several  thunder- 

storm  seasons  for  a  large  area.   Parti t ioning by a i r  mass was not 

d i rec t ly   poss ib le  w i t h  the h is tor ica l   da ta   ava i lab le .  However, a 

divis ion of data by surface wind component a t  1800 GMT w a s  considered 

t o  be a fa i r   subst i tute .   Consequent ly ,   the   data  were divided  into 

north wind and south wind sets depending on whether or   not   the   surface 

wind had  a norther ly  o r  southerly component a t  1800 GMT, respect ively.  

Separate  regression  analyses were performed on each  subset. 

3)  April and July 

A l l  days  and  observation  points  in  April   for  the two years of data  

were combined. The  same  was done for   Ju ly .  Again,  analyses were per- 

formed within  each  data se t  to   determine  differences,   i f   any,   in   spr ing 

and summer predictors .  

4 )  Random sample 

Samples were chosen by  random-number generators.so  that   develop- 

mental  samples  contained  nearly  the same number of  occurrences and 
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nonoccurrences.  The  unequal  natural  frequencies of thunderstorms 

versus no thunderstorms  create  problems in regression  analysis  when  the 

dependent  variable  is  binary.  These  problems  were  discussed  in  Section 

2. Results of application of the  various  statistical  techniques  outlined 

in Section 2 to subsets  discussed  here  are  presented  next. 

51 



5. RESULTS 

First,  comparisons of results  for  different  predictand  times  will 

be  presented.  The  types  of  predictors  selected  and  the  order in  which 

they  were  included  in  the  model  will  be  discussed  next  for  all  data 

subdivisions.  Following  this  will  be  the  importance  of  surface  versus 

upper-air  parameters  to  the  prediction of thunderstorms. A discussion 

of  the  maximum  R or variance  reduction  achieved  will  follow.  Next, 

performance of the  equations  applied  to an independent  data  set  will 

be  presented  followed  by  comparisons  with  results of  other  investigators. 

Results of a  principal  component  analysis  will  be  presented  next. 

Last  will  be  a  discussion  of  the  utility  of  these  equations  in  an 

operational  environment. 

2 

a.  Forecast  time  intervals 

Regression  models  were  tested  with  fixed  numbers  of  independent 

variables  and  three  time  combinations  of  the  dependent  variable: 1900- 

2000 GMT, 2000-2300 GMT,  and 2300-0200 GMT.  Random  samples  were  chosen 

so that p was  nearly  the  same.  The R decreased,  as  expected,  when L 

the  time  interval  between  observations  and  forecasts  lengthened;  how- 
,- 

ever,  the  occurrence  frequency of the  predictand  was  only 9.3% in  the 

first  period.  With so few  occurrences,  this  equation  would  likely 

deteriorate'  when  applied  to  independent  data.  In  other  words , there 
' \  

'"Deteriorate"  means  that  probabilities  of  thunderstorms  produced 
by  the  linear  equation  developed  from  data  in  a  dependent  or  develop- 
mental  sample  would  not  correspond  well  with  observed  frequencies of 
occurrence  when  these  equations  are  used  on  an  independent  sample  of 
data. 
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would  not  have  been  enough  different  thunderstorm-producing  environ- 

. 

ments  included  in  the  sample. Also, extrapolation  of  existing  radar 

echo  patterns  would  seem  to  be  a  more  promising  technique  for  those 1- 

to 2-h  forecasts.  Similarly,  it  is  not  likely  that  observed  features 

of  the  atmosphere  early  in  the  morning  would  adequately  reflect  ingre- 

dients  for  the  occurrence  of  thunderstorms  late  in  the  afternoon.  Con- 

sequently,  only  the  2000-2300 GMT period  was  included  in  all  further 

analyses. 

b. Predictor  selections 

The  order  of  selection  and  specific  predictors  selected  by  a  step- 

wise,  variable  selection  technique  are  shown  in  Table 9 for  different 

groups  of  data.  Only  the  first  six  of  many  predictors  offered  as 

candidates  are  shown. No matter  how  the  data  are  divided,  the  three 

variables  consistently  selected  include  a  combination  of  moisture  and 

trigger  terms;  the  next  several  invariably  include  a  measure  of  atmo- 

spheric  instability  through  either  stability  indices  or  linear  combi- 

nations  of  vertical  temperature  and  moisture  parameters.  The  first 

four-to-five  variables  include  all  the  synoptic-scale  conditions  for 

intense  convection.  Therefore,  it  is  not  surprising  that  more  than 

85% of  the  total  variance  explained  by  the  regression  mode.1  is  accounted 

for  by  the  first  five  variables. 

In  the  case  of  the  north  wind  and  all  other  subsets  except  south 

wind,  the  single  most  important  predictor  was  the  surface  mixing  ratio. 

The  presence  of  precipitation (MDRP) near 1800 GMT was  most  important 

for  the  south  wind  data.  In  the  area  chosen  for  this  study,  a  south 

wind  implies  the  presence  of  maritime  tropical  air  which  contains 
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Table 9.  Variables  selected,  cumulative R 2 , and sign of coeff ic ients   for  a stepwise selection 
procedure and different  data  subsets.  

Data 1 

TC t a l  W 0.108 + 

'RaildoKh 18% Gf W 0.185 + 

jdays 
North  wind 

/South wind 

April  
dependent  I 
1JUlY 

W 0.166 + 

M D W  0.105 + 

W 0.121 + 

W 0.130 + 

I 

I 
i 

i 

2 .  

MDRP 0 .181  + 

TTI  0.234 + 

MDW 0.220 + 

W 0.160 + 

M3RP 0.187 + 

MDW 0.201 + 

Orde:: 
3 

MDIV 0.;100 - 
MDRP 0.;!66 + 

W I V  0.250 - 
MDIV  0.1.76 - 
MDIV  0.216 - 

MDIV 0.219 - 

4 

T-T 0.209 - 
d7 

MDIV 0.280 - 

T-Td7 0 - 2 5 4  - 
T-T 0 . 1 9 1  - 

d8 

vs 0.224 + 

TTI  0.229 + 

5 

CSIL 

T-T 
d7 

0 
e7 

T-T 

I Dl 

d1 

VSUM 

0.216 - 
0.288 - 

0.259 - 
0.191 - 
0.228 + 

0.239 - 

6 

0 0.220 - 
0 0.296 - 

e 7  

e 7  

T-Td 0.266 i 

0 0.202 - 
e 7  

T-T 0.232 - 
d7 

- i  

T-T 0.244 -i d7 



considerable  moisture.  Therefore, a trigger  mechanism  identified  by 

MDRP would  be  an  important  parameter  contributing  to  thunderstorms, 

given  that  moisture is already  present. 

For  the  April and July  subsets  the  first  three  predictors  are  the 

same.  During  April, a 500-mb trough  (v-wind  component  at 500 mb) and 

concentration  of  moisture  gradient  at  the  surface  through  the  deforma- 

tion  field  of  the  wind  are  the  next  most  important  parameters.  This 

latter  predictor  can  be  interpreted  to  represent  the  location  of  the 

surface  dry  line  which  is  recognized  as a favored  region  for  severe 

weather  (Miller, 1972). In  the  spring,  surface  winds  are  stronger  and 

gradients  more  intense  than  in  summer.  Therefore,  one  would  expect 

these  quantities  to  be  reflected  more  in  the  synoptic  data  which  are 

utilized.  During  July  stability  measured  by  the  Total-Totals  Index  is 

the  fourth  predictor  chosen.  This  development  is  reasonable  owing  to 

the  weaker  winds  in  the  summer. 

In a separate  analysis,  four  different  time  changes  were  computed 

for  five  surface  variables.  These  were  the  1-h,  3-h,  6-h  and  3-h  change 

in  the  3-h  time  change  for  the  following: oe, MDIV, WTS, O,A, and 

if2P. When  these  were  used  as  candidate  predictors  in  the  stepwise 

selection  procedure,  they  were  not  chosen  among  the  top  five  predictors. 

Also, when  time  derivatives  were  selected,  the  3-h  and  6-h  changes  were 

chosen  before 1-h changes.  One  possibility  for  this  result  is  that  the 

original  spacing  of  surface  data  and  analysis  procedures  restricts  the 

amplitudes  of  resolvable  features.  Six-hour  features  are  more  likely 

to  have  the  larger  amplitudes  which  can  trigger  intense  convection  later 

in  the  afternoon.  More  work  needs  to  be  done  in  this  area. 
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The  signs of regression  coefficients  are  as  expected  when  other 

variables  are  included  in  the  model.  For  example,  the  sign  of  the 

temperature  coefficient  is  interpreted  as  the  change in predictand  for 

a unit  change  in  temperature  while  holding  constant  all  other  variables 

in  the  model  at  that  time.  The  negative  sign  indicates  that  given 

that  surface  moisture  (among  other  things)  already  is  present,  then 

thunderstorms  occur  with  lower  temperatures or when  the  air  is  more 

nearly  saturated.  The  total  correlation  coefficient  for  temperature 

shown  in  Table 10 indicates a positive  correlation  of  temperature  and 

thunderstorms  when  all  other  variables  are  ignored. 

c.  Importance of surface  versus  upper-air  parameters 
Regression  models  were  utilized  with  stepwise  procedures  for  sur- 

face  variables  and  upper-air  variables  separately.  Results  are 

summarized  in  Table  11.  Surface  parameters  alone  in  linear  combination 

accounted  for  15%  of  the  total  variance (RL = 0.150) , whereas  upper-air 

parameters  accounted  for  only  13.4%.  When  both  sets  were  used  to- 

gether,  however,  the  best  results  were  obtained; R improved  to  0.197. 

Both  timeliness  and  spatial  resolution  contributed  to  this  result. 

Surface  data  were  available  at 1800 GMT,  2-5 h before  thunderstorm 

occurrence  as  opposed  to  upper-air  observations  at  1200  GMT.  Also, 

surface  stations  are  spaced  about  120 km apart  compared  to  370  km  for 

upper-air  reports.  Space  derivatives,  which  are  used  extensively  as 

parameters,  are,  therefore,  more  nearly  represented  by  finite  differ- 

ences  in  the  case  of  the  former.  Even  though  the  upper-air  predictors 

were  old  and  contained  poor  spatial  resolution,  when  combined  with  sur- 

face  predictors,  they  produced a 30% improvement  in R . It  appears 

2 

2 
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T a b l e  10. Linear correlation coef f ic ien ts  of selected predictors 
with  the  occurrence of thunderstorms  during  the 
period 2000-2300 GMT. 

Predictor  Time of Correlation  Significance 
Observation ( G M T )  Coeff ic ient   Probabi l i ty  level 

w TS 

MDIV 

OeA 

LP 

5 

CSIM 

CSIL 

K I  

TTI  

STSI 

UWSH 

DVA 

LTHA 

DTA 

I D I V  

IMDIV 

1800 

1800 

1800 

1800 

1800 

1800 

1800 

1800 

1800 

1200 

1200 

1200 

1200 

1200 

1200 

1200 

1200 

1200 

1200 

1200 

1200 

0.280 

-0.154 

0.173 

0.103 

0.079 

0.099 

0.050 

0.041 

-0.082 

-0.275 

-0.230 

0.289 

0.251 

-0.274 

-0.130 

0.008 

0.052 

0.051 

-0.040 

-0.041 

-0.128 

0.0001 

0.0001 

0.0001 

0.0001 

0.0001 

0.0001 

0.0001 

0.0006 

0.0001 

0 -0001 

0.0001 

0.0001 

0.0001 

0.0001 

0.0001 

0.5173 

0.0001 

0.0001 

0.0008 

0.0006 

0.0001 
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Table  10. (Concluded) 

Predictor  Time  of  Correlation  Significance 
Observation  (GMT)  Coefficient  Probability  level 

DTH 

vs UM 

U 

V 

T 

T- T d 

MDRP 

1200 

1200 

1200 

1200 

1200 

1200 

1200 

1200 

1800 

1200 

1800 

1800 

1800 

1800 

1735 

-0.016 

0.283 

0.220 

0.311 

0.233 

-0.174 

-0.213 

0.090 

0.328 

0.113 

-0.043 

0.050 

0.166 

-0.190 

0.324 

0.0001 

0 -0001 

0.0001 

0.0001 

0.0001 

0.0001 

0.0001 

0.0001 

0.0001 

0.0001 

0.0001 

0.0001 

0.0001 

0.0001 

0.0001 
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Table 11. Summary  of  statistics  for  regression  analyses  with 
surface  and  upper-air  predictors. 

" ~~ 

Total  Occurrence  Data  Max  R2  Number  Mean 
Sample  Frequency  of  Squared 
Size  Predictors  Error 

7492 17.9 Surface 0.150 11 0.125 

7492 17.9 Upper  air  0.134 16 0.128 

7492  17.9  Surface  and  0.197  24 0.118 
upper  air 

7125  17.9  Upper  air,  0.243  20  0.114 
surface  and 
M D W  

that  poor  as  they  are,  these  predictors  fil.1 an important  gap  in  iden- 

tifying  those  observed  features  of  the  atmosphere  which  are  subsequently 

related  to  intense  convection.  Surface  data  alone  give  little  indica- 

tion  of  the  potential  stability  of  the  atmosphere.  It  is  this  ingre- 

dient  which  is  added  by  including  upper-air  parameters.  The  dew-point 

depression  at  the  700-mb  level  is  the  first  upper-air  predictor  included 

by  the  stepwise  procedure.  Also,  it  is  the  third  parameter  following 

low-level  moisture  and  moisture  divergence.  Stability  alone,  however, 

gives  inadequate  information  for  predicting  subsequent  thunderstorms. 

From  Table  10 (p.  57)  it  is  seen  that the highest  correlation  coefficient 

between  the  predictand  and  any  single  stability  measure  is  0.289  for  the 

K index.  Several  other  variables  such  as W, the  radar  predictor (MDRP), 

and  equivalent  potential  temperature  differences  exhibit  higher  cor- 

relations. 
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d.  Quality  of fit of the  regression model 

While the  conditions  for  thunderstorms are known with some con- 

fidence as far as synoptic  data are concerned, t he re  is l i t t l e  confi- 

dence i n  determining  these  conditions from the  study  data.   For example, 

s t a b i l i t y  can be obtained f r o m  t he   ve r t i ca l   s t ruc tu re  of temperature 

and  moisture  profiles. When a l imited sample of these  data  a t  a f e w  

fixed  levels  in  the  troposphere  comprise  our  measures,  only  approxi- 

mations to   t he   s t ab i l i t y   can   be  made. There is a number of  these 

approximations  depending on levels,  variable  combinations, and physical 

assumptions  (parcel method, layer  method, etc.) .  Similar ly ,   the   t r igger  

mechanism must  be in fe r r ed   s ince   ve r t i ca l  motion, the usual   t r igger ,  i s  

not one  of the  observed  variables.   Finally,  the parameters contributing 

t o  many thunderstorm  occurrences  exist on a scale much smaller than w e  

can  resolve  with  our data. Thunderstorms  have  been  observed t o  occur 

a t  boundaries  and  intersections  of  pressure  discontinuities  (gust   fronts) 

caused by previous cells (Purdom, 1974).  Similarly,  they  have  been ob- 

served t o  develop in   the   a f te rnoon  in   a reas  which were void  of  clouds 

tha t  morning (Weiss and Purdom, 1974). The influence  of  the sea breeze 

is i l l u s t r a t e d  by the  frequency  distribution of thunderstorms  along  the 

Gulf Coast and Florida  (Scoggins,  1976). Small-scale convergence  in- 

duced by gravity waves (Wave CISK)  appears t o  be important t o  intense 

convection from theoretical   considerations as w e l l  (Raymond, 1976). 

Even d i f fus ion   i n  a two-constituent medium might  be a trigger  (Schaefer,  

1975) . A consequence of the  foregoing  discussion is  reflected i n  the 

overa l l  low 

occurrences 

R o r   r e l a t i v e l y  small amount of variance  of  thunderstorm 

t h a t  can  be  explained by the l i n e a r  combination  of  synoptic 

2 
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storm observations  produced  the  highest R . ,  0.332, mst likely  because L 

Table 12. Summary of s ta t i s t ics   for   regress ion   ana lyses   wi th  
different   data   subsets .  

Total  Occurrence  Data Max R Number Mean 
Sample Frequency  of  Squared 
Size ( % I  Predictors  Error 

7125  17.9 Total 0.243  20  0.114 

220 3 40.7 Random 18% 0.332  18  0.163 
of no TSTM 
days 

2376 13.9 North wind 0.284  13  0.086 

4750 20.6 South wind 0.238  21  0.125 

1837 8.1 April  0.255  14  0.056 
dependent 

1759  25.4 J u l y  0.279  16 0 -138 
dependent 

t h e   t o t a l  number of  observations  decreased. The equation  for  predicting 

thunderstorms which developed  between 2000 and 2300 GMT following  sur- 

face wind with a northerly component a t  1800 GMT accounted  €or 28.4% of 

the   to ta l   var iance ,  whereas the  south wind equation  accounted  for 23.8% 

though some of t h i s   d i f f e rence  would be due to   the   l a rger   occur rence  

frequency in   t he   sou th  wind data.   Further,   the  north wind equation  did 

its job  with a fewer number of  predictors.  

The R for   the  A p r i l  and July  data  are based on fewer  observations, 2 
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but  it  is  interesting  to  note  that  the R2 for  April (0.255) is  lower 

than  that  for  July (0.279) even  though  the  frequency  of  thunderstorm 

occurrence  is  much  higher  in  July. 

The  mean  squared  error (MSE) of  the  regression  analyses  continued 

to  be  reduced  as  more  variables  were  added  to  the  model.  This  indicates 

that  the  exact  synoptic-scale  measures  of  the  conditions  for  thunder- 

storms  were  not  available,  or  the  parameters  did  not  truly  represent 

these  conditions.  This  result  is  not  surprising  if  one  considers 

the  crudeness  of  our  measures  of  atmospheric  structure  in  terms  of 

limited  horizontal  and  vertical  resolution,  the  untimeliness of the 

upper-air  measurements (8-11 h  before  thunderstorm  occurrence),  and 

limitations  imposed  by  the  specific  observed  variables  from  which  para- 

meters  were  computed. 

Another  way  to  evaluate  quality  is  to  consider  how  well  predicted 

probabilities  represent  actual  frequencies  of  occurrence  of  thunder- 

storms.  Predicted  probabilities  in 10% increments  were  generated  for 

several  different  data  subdivisions.  These  are  shown  in  Fig. 9. In 

general  there  was  a  slight  tendency  to  overpredict  the  observed  prob- 

ability  at  low  probabilities  and  underpredict  for  probabilities  above 

0.6. This  seems  to  be  consistent  with  our  natural  bias  in  subjectively- 

derived  probabilities.  Underprediction  at  high  frequencies  of  occur- 

rence  can  be  explained  by  the  decreased  slope  of  the  regression  plane 

owing  to  the  many  more  non-occurrence  observations  compared  to  thunder- 

storm  occurrences  (see  paragraph  e). No explanation,  however,  is 

apparent  for  the  overprediction. 
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Fig. 9. Relation  between  predicted  and  observed  probabilities of 
thunderstorm  occurrences for various  data  subdivisions. 
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e. Performance on a test  da ta  sample 

A fur ther  measure  of the qua l i ty   o r  goodness  of  the  regression 

models i s  how well.the  equations  perform on an  independent  data  sample. 

Equations  developed from  a dependent  sample were applied  to  independent 

data.  Furthermore, a threshold of predicted  probabi l i ty  was chosen and 

a  contingency  table  of  counts  for  predicted and observed  yes and no 

cases  developed  as  follows: 

Forecast 
0 
b SUm N o  Yes 

Y e s  A e 
r 

d -  
SUm e 

C N o  

B 

D 

S 

V 

~~ 

sq T s3 

s2 

From such  a tab le  some typical   d iscr iminates  can be  examined  such as   the  

overal l   percent   correct ,  (A+D)/T)100; the percent of correct ly   forecast  

observations of an occurrence,  called  prefigurance, (A/S1)lOO; the  per- 

cent of correctly  observed  forecasts of occurrence  (postagreement), 

(AIS ) l o o ;  Threat  Score, A/A+B+C (Charba, 1977) c a l l e d   c r i t i c a l  Success 

index by Donaldson e t   a l . ,  (1975); s k i l l  score [(A+D) - s3s1 + S4S2)/T1/ 

[T - s s + s s ) / T I ,  discussed by Brier and Allen  (1952); and  V-Score, 

v = (AD - BC) /(A+B) (C+D) , presented by  Dobryshman (1972) and discussed 

3 

" 

3 1  4 2  

by  Woodcock (1976).  The threat   score ,  s k i l l  score ,   or   percent   correct  

cannot  be  interpreted  to measure re la t ive   mer i t s  of  each  subdivision  of 

the  original  data  because each is a function  of  the  observed  probability 

of occurrence  (cal led  t r ia l   condi t ions by Woodcock (1976) ) .  These 

p robab i l i t i e s  change as  the  threshold of pred ic ted   p robabi l i t i es   for  

classification  purposes  changes.  Table 13 contains example contingency 
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:3 q Table 13.  Contingency tables f o r  25 no-thunderstorm  forecasts  shifted 
t o   t h e  yes forecast column in  different  observed  proportions.  
Threat score and s k i l l   s c o r e   a r e   a l s o  shown. 

!t " 

d 
'7  > 

" . . . ." - " - 
~- . . . ." = - --- i"- " . . - . . - 

i (a) Original  proportion (b)  10%  proportion (c) 15%  proportion 
(20%  forecast  yes) 

Forecast 

(3  yes; 

e 
r 

e 

TS = 0.291 

SS = 0.340 

TS = 0.280 

SS = 0.318 

(dl 20% proportion 
(5  yes; 20 

TS = 0.288 

SS = 0.330 

no 1 

No 

50 

636 

Yes 

634 N o  

(e) 30% proportion 
(8  yes; 17 no) 

TS = 0.304 

SS = 0.356 

No. 

47 

639 

TS = 0.282 

SS = 0.326 

(f 49% proportion 
(12  yes;  13  no) 

Y e s  79 43 

N o  1 2 1  643 

TS = 0.320 

SS = 0.386 



tables  where a fixed  number  of  no-thunderstorm  forecasts  (in  this  case 

25) are  shifted  to  the  yes  column  for  different  proportions of observed 

yes  and  no  cases.  This  is  exactly  what  is  done  when  the  threshold 

probability is lowered.  One  can  see  that  the  threat  score (TS) or 

skill  score (SS) exceeds  the  original  values  only  after  the  proportion 

within  the  observed  categories  exceeds  the  original  forecast  probabili- 

ty.  They  appear  to  be  unsuitable  for a goodness  measure.  The  overall 

percent  correct  also  is  not  very  meaningful  because  of  the  many  days 

when  no  thunderstorms  occur.  The  V-score  is  least  affected  by  trial 

conditions  but  also  involves  the No-No entry.  Therefore,  our  discussions 

will  focus  primarily  on  the  prefigurance  and  postagreement  percentages. 

Table 14 contains  the  above  discriminates  for  each  data  subdivision. 

One  can  obtain  an  indication  of  the  deterioration  of  the  equations 

by  looking  at  the  decrease  in  any  of  the  discriminates  but,  in  partic- 

ular,  the  V-score  between  the  developmental  and  test  samples.  For 

example,  the  mean  V-score  for  the  total  developmental  sample  is  0.454. 

The  mean  for  the  total  test  sample  is 0.390. The  lower  score  means 

poorer  performance. 

Thunderstorms  appear  to  be  more  predictable  from  synoptic  para- 

meters  when  the  surface  wind  has a northerly  component  at 1800 GMT. 

Such  an  implication  is  indicated  by  the  greater  V-score,  prefigurance, 

and  postagreement  percentages  for  the  north  wind  equation  when  tested 

on  the  independent  sample  compared  to  similar  statistics  for  either  the 

total  equation  or  that  for  the  south  wind  subdivision.  There  are 

several  explanations.  First,  thunderstorms  frequently  develop  behind 

a shallow  surface  cold  front  (north  wind  component)  in  the  area  of 
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T a b l e  14. Summary of contingency tables. 

Observed  Forecast  Threshold  Prefigurance ( 0 )  Postagreement ( 0 )  Percent Skill Threat V score  Sample  to 
Frequency ( 0 )  Frequency ( 0 )  Correct  Score  Score which  applied 

- 
Total  Sample 

19.4  31.4  .22 65 40 74 .337  .329  .417 Test 
19.4  25.7  .25  59  44 78 .362  .335  .407  Test 
19.4  20.2  .28  51  49 80 .379  .335  .385  Test 
19.4 17.1  .30  45  51  81  .350  .316  .350  Test 
17 .O 26.8 - 25 69 44 80 .418  .369  .513  Developmentar 
17 .O 18.1 .30  54  51 83 .427  .358  .438  Developmental 
17.0  15.5  .32  50  54 84 .426  .351  .411  Developmental 

.................................................................. 

Random  Sample 

60.4  62.4 .46 78 80 74  .455  .652  .451  Random  test 

57.1  63.2 .50 85 77  76  .SO9  .672  .500  Random 

19.4  51.9 .42 84 31 61 
19.4 40.2 .50  76 37 70 .316 .329 .445 Test 
19.4 20.8 .65 52 48 80 .381 .337 .392 Test 

"""""_"""" 2 5 2  ..................................................... 59.5 .50 57 48 75  .474  .638 .500 Random  test 

"~""""""""""""""""""""""""""""~""""""""""""""""" .2~j"-TZ95""T555""~~~~""""- developmental 

North  Wind 

13.8  23.2 .25 66 39 
13.8  20.5 .28 64 43 
13.8 18.5 .30 59 44 
13.8  14.1 .34 47 46 

81 .381 .323 .491 Test 
83 .417 .345 .503 Test 
84 .410 .336 .470 Test 
85 .374 .300 .378 Test """"""~"__" A112 - """""""""" """" 13.8 . 37  39  47 

13.5  22.3 .25 74  45 84 .466  .385  .596  Developmental 
13.5  17.5  .30 6.5 59 87 
13.5 

.494  .399 .556 Developnental 
13.8  .34  59 57 89 

13.5  12.2  .37  52 58 88 .483  .379 -464 Developmental 
.513  .408  .518  Developmental 

85 .339  .267  .314 Test 

South  Wind 

22.0  56.3  .25  57 48 77 .372  .354  .399 Test 
22.0  23.0  .27  54  52 

19.0  29.8 .25 69 
19 .o 25.6 .27 63 47 
19 .o 20.6 .30 56 
19.0 16.1 .33 47 

79  .389  .357  .396  Test 
17.0 .30 45 58 81 .385  .336  .354  Test 22.0 """""""_ 44 .398  .366 .$E- Developmentar 

79 .409  .367 .464 Developmental 
51 82 .423  .367 .438 Developmental 
55 63 .404  .340 .382 Developmental 
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this  study.  In  these  situations  the  storms  are  usually  connected  with 

a synoptic-scale  vertical  motion  field  that  results  from  positive 

vorticity  advection  due  to a short-wave  trough  aloft,  given  that 

moisture  and  potential  instability  exist.  Storms  also  can  develop 

along a surface  cold  front  which  trails  an  active  squall  line.  In 

these  cases  as  well,  the  surface  winds  behind a southeastward  moving 

squall  line  are  likely  to  have a northerly  component  2-5 h before  the 

occurrence  of  the  cold-front  cells.  Finally,  we  can  distinguish  between 

thunderstorms  in  continental  air  masses  where  surface  winds  are  from 

the  North  and  maritime  air  masses  with  southerly  winds.  Thunderstorms 

occurring  in  the  maritime  air  are  more  frequently  classified  as  con- 

vective,  air-mass  thunderstorms  (Beers, 1945). The  trigger  mechanism 

€or  releasing  the  instability  usually  present  is  less  detectable  from 

synoptic  data.  Mesoscale  or  even  smaller  discontinuities  may  exist  and 

contribute  to  the  trigger.  These  elude  detection  from  the  data  in 

this  study. 

When  applied  to a random  dependent  sample  (in  other  words  how  well 

can  the  linear  function  discriminate  between  thunderstorms  and  no 

thunderstorms  within  the  dependent  sample  which  only  includes 17% of 

all  no  observations 1, the  equation  produced  prefigurance  and  post- 

agreement  percentages  of 85 and 77, respectively,  although  the  overall 

percent  correct  was  down  to 76 (Table  14,  p. 6 7 ) .  The  deterioration  when 

applied to a random  independent  sample  was  not  large.  For a threshold 

of 0.46, 78 and 80% were  obtained  for  the  prefigurance  and  postagreement, 

respectively.  When  the  equation  developed  from  the  random  dependent 

sample  (17%  of  no-thunderstorm  observations)  was  applied  to  the  total 
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independent  sample  (as  opposed  to  the  random  independent  sample), 

the prefigurance-postagreement percentages  were  not  as  high. 

It  is  not  clear  why  the  equation  from  the  random  dependent  sample 

deteriorates so little  when  applied to the  independent  sample.  One 

possible  explanation  could  be  due to the  binary  nature  of  the  dependent 

variable  and  unequal  distributions  of  occurrences  and  nonoccurrences. 

Figure 10 shows  how  the  influence  of  the  nonoccurence  observations. 

o DATA FROM TABLE 3 - REGRESSION LINE 
(TABLE 3) 

X DATA FROM TABLE 4 
"" REGRESSION LINE 

(TABLE 4) 

INDEPENDENT VARIABLE ( x )  

Fis. 10.  Resression  lines  for  data  in  Tables 3 and 4. 

actually  decreases  the  slope  of  the  least  squares  estimate of a regres- 

sion  line.  By  eliminating  the  no's so that  the  proportions  are  more 

nearly  equal,  the  slope  is  increased.  This  increase  can  be  visualized 

as  an  increase  in  the  discriminating  ability.of  the  independent 



variables. As the  slope  of  the  regression  line  increases,  a  small 

change  in x would  produce  a  large  change  in  the  predicted  probability 

(Y) if  the  linear  function  were  to  be  used  in  a  predictive  fashion. 

Several  attempts  were  made  to  accomplish  the  same  result  by  using 

critical  values  of  predictors.  These  values  were  selected  from  frequency 

distributions  of  the  predictand  and  leading  predictors.  One  such  fre- 

quency  distribution  is  shown  in  Fig. 11. There  a  cut-off  would  be 

5 g kg-' for  the  surface  mixing  ratio.  Others  were  chosen  similarly 

and  used  in  conjunction  (logical e) and  disjunction  (logical E) 

operations.  An  example  of  the  latter  would  be  as  follows:  If 

w < 5 g kg-' or 0 < 317 K or KI < -8 or w < 5 g kg , then  delete this 

observation  (hopefully  it  will  be  a  no-thunderstorm  observation).  In  fact, 

the  above  statement  provided  the  best  results  which  could  be  obtained. 

-1 
e 8 

Frequency  of  occurrence  was  increased  only 7% and R changed  from 0.260 

to 0.247 for  a  stepwise  procedure. 

L 

f.  Comparison  with  other  results 

Except  for  the  work  of  Charba (1977) there  are  no  other  results 

which  are  directly  comparable.  Charba  has  published  his  results  for  a 

similar  statistical  technique  (step  up)  and  for 2- to 6-h forecasts 

of  thunderstorms  (defined  similarly  from MDR data).  His  research  area 

includes  most  of  the  eastern  United  States,  and  predictand  area  is 

about 80 km  on  a  side.  However,  Charba  used  combinations  of  radar 

observations  at 1735 GMT,  radar  climatology,  surface  observations  at 

1500 GMT,  and  upper-air  forecasts  valid  at 2100 GMT  from  a  limited- 

area,  fine-mesh  model  (Howcroft  and  Desmarais, 1971) as  predictors. 
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If  we  exclude  radar  predictors , his  top  four  were (1) a modified" K 

index,  (2)  moisture  divergence  at  the  surface, (3)  modified  Total- 

Totals  Index,  and (4) 500-mb wind  speed.  These  compare  favorably  with 

the  moisture,  divergence,  and  stability  parameters  from  observations 

in  this  study.  The  observed  frequency  of  thunderstorms  in  Charba's 

work  was 10% compared  to  17%  here.  One  should  see  an  increased R 2 

from  this  influence  in  Charba's  result  counteracted  to 

reduction  in  R2  due  to  the  smaller  forecast  area.  The 

an  R2  of  0.282  in  Charba's  scheme  compared  to  0.284  in 

some  extent  by a 

net  result  was 

the  case  of our 

north-wind  equation.  In  addition,  Charba's  predicted  probabilities 

were  similar  overall  to  those  in  this  research. 

Some  knowledge  is  required  of  how  forecasters  subjectively  predict 

thunderstorms  in  an  operational  environment.  Unfortunately,  there  are 

no  statistics  which  would  exactly  correspond  to  the  areas,  times,  and 

procedures  used  here.  In  fact,  any  verifications  of  thunderstorm  fore- 

casts  with  different  lead  times  are  difficult  to  find.  One  set  of 

data  was  available  for 14 base  weather  stations  in  or  near  the  area  of 

Fig. 4 (p. 32) during  the  June,  July,  and  August 1976 period.  These  data 

consist  of  warnings  issued  by  forecasters  of  impending  thunderstorms. 

The  number  issued  and  the  number  verified  with a lead  time  is  summarized 

in  Table  15.  Thunderstorms  which  occur  less  than 1 h from  the  forecast 

1°Modified  in  this  context  means  that  surface  observations  of 
temperature  and  dew  point  at  1800  GMT  were  averaged  with a forecast 
temperature  and  dew  point  at  850 mb. 

7 2  



Table  15.  Contingency  table  of  observed  and  forecast 
thunderstorms  for  14  base  weather  stations 
near  the  area  outlined  in  Fig. 4. 

0 
b 
S Yes 
e . ~ 

r 
V 
e 
d No 

Yes 

Forecast 

78 

167 

31.8% 

time  are  counted  as  misses.  For  example, a warning  for  thunderstorms 

issued  at  1700  GMT  valid  for  the  period 1900 to  2300  GMT  would  be a 

hit  if a thunderstorm  were  observed  at  the  station or within  the  base 

environment  after 1900 GMT.  Otherwise,  it  would  be a miss.  The  base 

environment is usually  about a 10-km radius  of  the  station  but  may  vary 

up  to  45 km. This  is  still  considerably  smaller  than  the  forecast 

area  of a square  138 km on a side  used  in  this  s-hdy  and,  therefore, 

should  reflect  poorer  performance.  On  the  other  hand, a 1-h  lead  time 

is  allowed  for  verifying  the  weather  warnings,  whereas  the  lead  time  is 

2 h for  the  statistics  in  Appendix B. This may compensate  to  some  ex- 

tent  for  the  smaller  area.  Many  other  differences  exist  between  these 

statistics  and  those  presented  in  Appendix B so that  comparisons  are 

difficult.  The  very  definition of thunderstoms is different. An MDR 

code  of  four  or  greater  was  used  in  this  research.  The  weather  station 
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used  their  observation  log  or  the  radar  in a qualitative  sense..  Also, 

the  issue  time  from  the  weather  station  was  not  constrained  to 1800 GMT. 
Finally,  the  period  for  the  base  weather  station  included a year,  1976, 

and  month,  August,  that  were  not  available  in  this  study.  Nevertheless, 

the  low  prefigurance  and  postagreement  percentages of 46% and 32%,  

respectively,  seem  to  be  typical  of a forecaster's  performance  at  this 

difficult  task. 

Though  there  is  little  confidence  in  comparisons of verification 

measures  applied  to  data  of  this  nature,  there  are a combination  of  en- 

couraging  signs  which  lead  to a conclusion  that  observations  of  key 

parameters  in  linear  combination  can  provide  useful  forecasts  of  thun- 

derstorms  in  areas  of  about 8 3 5 0  k m L  for  periods  of 2- to  5-h.  First, 

parameters  selected  by  statistical  methods  provide  the  ingredients  for 

subsequent  thunderstorms  which  have  been  deduced  from  many  years  of 

experience.  Secondly,  the  equations  do  not  deteriorate  when  applied  to 

independent  samples.  ,Further,  contingency  tables  produced  from  equations 

for  many  different  threshold  probabilities  provided  higher  prefigurance 

and  postagreement  percentages  than  those  from a table  of  actual  perfor- 

mance.  Also,  predicted  probabilities  from  the  equations  represent 

actual  occurrence  frequencies.  Finally,  these  results  are  very  similar 

to  those  from  an  operational  program  where  forecast  model  predictors  had 

been  used.  Results  of a principal  component  analysis  are  discussed 

next. 

g.  Dimensionality' 

As stated  earlier,  eigenvectors of the  independent-variable  matrix 
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that  consist  of  sums  of  squares  and  cross  products, (X'X), can  be 

interpreted  to  represent  the  part  of  the  total  variance  accounted  for 

by  the  given  linear  combination of variables  where  the  eigenvector 

elements  are  the  weights  or  coefficients.  If  it  turns  out  that  the 

first  few  components  account  for  some  large  percentage  of  the  total 

variance  as  shown  by  the  cumulative  portion  of  the  eigenvalues,  then 

it  can  be  assumed  that  there  is  evidence  of  the  true  dimensionality  of 

the  original  set of variables  or  that  there  is an indication  of  the 

total  number of hypothetical,  latent  variables  needed  to  describe  the 

structure  of  the  original  variables.  This  is  another  way  of  quantifying 

the  degree  of  intercorrelation  among  the  x's.  These  eigenvectors  for 

different  subsets  of  the (X'X) matrix  are  shown  in  Table 16. Also 

shown  are  the  associated  eigenvalues  and  cumulative  portion  of  the 

total  variance  which  is  accounted  for  by  each  successive  eigenvector. 

In  the  case  of  moisture  parameters,  we  can  account  for  nearly 

90% of  the  total  variance  in  all  moisture  parameters  by  using  the  first 

five  components  (the  five  largest  eigenvalues).  We  can  account  for 

50% of  the  total  with  just  two.  The  variables  which  seem  to  be  most 

important,  according  to  the sun of  the  first  two  eigenvector  co- 

efficients,  are  surface, 850-, and 700-mb mixing  ratio,  equivalent 

potential  temperature  at  the  surface,  and  dew-point  depression  at 700 

mb. It  is  not  surprising  that  among  these  are  the  leading  parameters 

selected  by  the  stepwise  regression  procedure. 

Stability  parameters  have  fewer  dimensions  as  shown  by  the  eigen- 

vectors.  Just  one  principal  component  accounts  for 59% of  the  total 

variance.  The 90% point  is  reached  with  only  four  eigenvectors.  Among 
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Table 16. Eigenvectors  and  eigenvalues  for  moisture,  stability and trigger  parameters. 

(a)  Moisture  Parameters 

Eigenvectors 

Parameter 1 2 3 4 5 6 

'e 

IVWl 0.080 0.259  0.585  0.400  -0.004  -0.649 

v2w -0.095  -0.213  0.543  -0.094  0.714  0.341 

OeA 0.027  0.192  -0.577  0.187  0.693  -0.334 

0.442  0.372  0.044  0.156  0.035 0,304 

0.489  0.061  0.118  -0.326  0.077  -0.056 

w7 0.403  -0.408  -0.016  0.371  -0.006  0.095 

(T-Td) -0.255 0.630  0.101  -0.312  0.026  0.113 

(T-Td) -0.331 0.196  -0.003  0.653  -0.045  0.415 

W 0.460 0.327  -0.055  0.068  -0.022  0.249 

Eigenvalues  3.395  1.580  1.220  1.004  0.874  0.698 

Cumulative 0.377  0.553  0.688  0.800  0.897  0.975 
portion 

(b) 

Parameter 

CSM 

CSIL 

KI 

TTI 

STSI 

DTA 

DTH 

0 

0 
e8 

e7 

Stability  Parameters 

Eigenvectors 

1 2 3 4 

-0.421 0.060 0.102 0.107 

-0.337 0.097 0,337 0.513 

0.356  0.114  0.213  0.358 

0.370  -0.279  -0.131  0.074 

-0.421  0.063  0.102  0.107 

0.032  -0.381  0.806  -0.450 

-0.042  0.763  0.068  -0.495 

0.408  0.195  0.077 -0.030 

0.314  0.355  0.377  0.364 

5 

0.078 

0.150 

0.537 

0.530 

0.074 

0.040 

0.365 

-0.347 

-0.375 

Eigenvalues  5.346  1.226  0.981  0.881  0.395  0.092 

Cumulative  0.594  0.730  0.839  0.937  0.981  0.991 
portion 



4 
4 

T a b l e  16 (Concluded) 

Parameter 

$2P 

5 

DVA 

LTHA 

IDIV 

IMDIV 

'TS 

MDIV 

1 

-0.370 

-0.374 

-0.012 

-0.149 

0.101 

0 .lo5 

0.583 

0.583 

Trigger  Parameters 

Eigenvectors 

2  3  4 

-0.170  0.129  0.013 

-0.079  0.182  -0.254 

0.353  0.607  0.615 

0.576  -0.231  -0.443 

-0.073  -0.689  0.542 

-0.702  0.157  -0.118 

0.037  0.133  -0.152 

0.099 0.110 -0.176 

5 

0.583 

0.520 

0.068 

0.050 

0.384 

-0.092 

0.344 

0.326 

6 

-0.098 

-0.009 

0.349 

0.606 

0.224 

0.670 

-0.047 

-0.019 

-~ ~ 

Eigenvalues 2.170  1.079  1.023  0.991  0.938  0.886 

Cumulative  0.271  0.406  0.534  0.658  0.775  0.886 
portion 

I 



the  first  two  components  those  important  variables  seem  to  be  equivalent 

potential  temperature  at 700 and  850 mb and  the  Total-Totals  Index. 

If  we  consider  all  eigenvectors,  the  top  five  parameters  are 0 -0 , 

static'stability  index, 0 , Total-Totals  Index,  and  differential 
thickness  (DTH).  All  stability  parameters  are  highly  intercorrelated 

and  there  really  should  not  be  many  dimensions  when  they  are  considered 

together. 

e5 e8 

e8 

Principal  components  for  trigger  parameters  indicate  that  the 

trigger  mechanism  is  difficult  to  identify  from  these  parameters.  The 

cumulative  variance  does  not  reach 50% until  the  third  eigenvector  (com- 

pared  to  first  for  stability  and  second  for  moisture)  and 90% is  not 

reached  until  eigenvector  seven  (not  shown  in  Table 16, p. 76, as  we  stop 

at  six  eigenvectors).  Here,  important  parameters  are  vertical  motion  at 

the  top  of  the  surface  layer  (this  includes  terrain  induced  vertical 

motion),  surface  divergence  of  moisture,  and  integrated  moisture  di- 

vergence  from  850  to 300 mb. 
Finally,  all  predictor  parameters  can  be  considered  together.  This 

case  is  summarized  in  Table 17 where  only  eigenvalues  and  cumulative 

variance-are  shown.  With  five  principal  components  one  could  account 

for  50%  of  the  total  variance  among  all  parameters.  Seventeen  components 

could  account  for 92%. Therefore,  it  seems  justifiable  to  use  at 

least  five  variables  in  discriminant  models  and  possibly  up  to 17. The 

radar  predictor  was  not  included  in  this  analysis. 

h.  Operational  utility 

It  is  rather  fortuitous  for  individual  weather  station  application 
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Table 17. Eigenvalues  and  cumulative  portion  of  total  variance  accounted 
for  by  each  successive  eigenvector. 

p 

Eigenvector 

1 2 3  4  5  6  7  8  9 
Eigenvalue 9.677 3.032  2.698 2.055 2.012 1.777  1.336  1.218  1.149 

Cumulative 0.276  0.363 0.440 0.499  0.556  0.607  0.645 0.680 0.713 
Portion 

10 11 12   13   14   15   16  1 7  1 8  
Eigenvalue 1.026  0.997  0.965 0.918 0.872 0.864  0.761  0.734  0.653 

Cumulative 0.742 0.771  0.798 0.825 0.849 0.874  0.896  0.917  0.936 
Portion 

that  none  of  the  more  complicated  (from  a  computational  standpoint) 

parameters  were  chosen  among  the  top  few  predictors. In a  five-vari- 

able  equation  one  would  have  only  to  evaluate  the  moisture  divergence 

term.  In  order  to  do  this,  one  needs  to  plot 1800 GMT  mixing  ratios 

obtained  from  a  skew-T  diagram  along  with  u  and  v  wind  components. A 

forecaster  should  extract  values of (1) the  product  of  u  x W at  two 

east-west  grid  points  spaced 130 km apart, 65 km to  either  side  of  his 

station,  and (2) v x W at  two  similarly  spaced  north-south  grid  points. 

Negative  predicted  probabilities  are  possible  but  should  be  con- 

sidered  as  zero.  Similarly,  probabilities  greater  than  one  should  be 

interpreted  as  one.  The  probability  threshold  for  a  thunderstorm-no- 

thunderstorm  decision  could  be  estimated  from  the 40% postagreement 

percentages  in  the  contingency  tables  from  within  the  dependent or 

total  samples.  The  best  estimate  for  either  the  total,  north  wind,  or 

south  wind  equations  is  about 0.28. This  would  optimize  prefigurance 

at the  expense  of  "crying  wolf"  and  total  percent  correct.  Of  course, 

this  cut-off  would  be  shifted  toward  lower  probabilities  when  a  critical 
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(in  terms of costs  involved)  task  was  involved. 

The  probabilities  can  be  used  directly  and  the  operator  should  be 

encouraged  to  use  these  in  conjunction  with  cost  analyses.  If  the  costs 

of  protective  action  and  loss  potential  for  inaction  are  known,  then 

the  occurrence  probabilities  can  be  used  in  objective  cost-loss  algo- 

rithms  (Murphy,  1976) . 
Operational  equations  should  be  developed  in  given  areas  with  all 

data  available.  Since  this  study  was  undertaken, an additional  year of 

data  has  been  collected.  New  equations  should  incorporate  all  days  for 

which  predictor-predictand  samples  are  available  and  should  be  applied 

to  the  subsequent  year. So long  as a few  (five  or  six)  predictors  are 

used,  weather  station  forecasters  within  the  development  area  and  for 

the  particular  predictor-predictand  times  could  use  the  equations  di- 

rectly  for  estimating  the  probability  of  thunderstorms.  More  complicated 

equations  which  incorporate  extensive  analysis,  and  transformed  pre- 

dictors  would  be  applied  to  current  data  at  facilities  with  computer 

processing  capability.  Probabilities  could  be  transmitted  to  appropriate 

locations.  This  latter  procedure  is  currently  employed  by  the  National 

Weather  Service.  (See  National  Weather  Service  Technical  Procedures 

Bulletin  194.) 

The  following  five-variable  equations  developed  from  the  1974-1975 

sample  can  be  tested  with  current  data  and  probabilities  evaluated: 

Total  PY = 0.0181 + 0.0185*W + 0.414*MDRP - 0.00278* ($ -wv ' )  

(8) - 0.00569*(T-Td) - 0.00515*(O - Oe8) 
e7 

North  wind  PY = 1.028 + O.O0337*w + 0.358tmm - 0.00336*($.&) 

- 0.00374*  (T-T ) - 0.00373aO d 7  e7 
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South  wind  PY = 0.0655 + 0.427*MDFS + O.O194*W - 0.00265* ( is -&)  

- 0.00583*(T-Td)8 - 0.00406*(T-T ) 
(10) 

d 7  

Coefficients  from  these  equations  are  valid  for  the  following  units  of 

measure  for  predictors: W (g kg-') ; MDRP (zero  or  one  for  no  precip 

or  precip) ; V (m s 1 ; T, 0,  T (K) ; Ax = by = 1.3  (m)  in  the  moisture 

divergence  calculation.  Predicted  probabilities  would  apply  to  loca- 

1 -b 
: '. 

-1 
d 

tions  within  the  developmental  area  (Fig. 4 ,  p.  32)  and  are  valid  with 

1800 GMT  surface  or  1200  GMT  upper-air  observations.  Thunderstorm  prob- 

abilities  (PY)  would  apply to the  area  shown  in  Fig. 6 (p.  39)  with  re- 

spect  to  the  forecasting  station  and  during  the  period  2000  to  2300  GMT. 

Performance  in  terms  of  prefigurance  and  postagreement  percentages 

of a binary  (yes  or  no)  forecast  could  be  expected  to  be  slightly  lower 

than  the 65%, 40% obtained,  respectively,  with  equations  containing 

more  than  15  predictors. 
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6. UPPER-AIR CONDITIONS AT 3-h INTERVALS 

On one  day, 24 April  1975, upper-air  data were avai lable  a t  3-h 

intervals .  These were col lected as p a r t  of the  Fourth  Atmospheric 

Variabi l i ty  Experiment (AVE I V )  sponsored by the  National  Aeronautics 

and  Space Administration (NASA). Analyzed f i e l d s  of  .temperature,  height, 

dew point ,  and wind components  from a 158-km grid  spacing  for  49 g r id  

points  and four   l eve ls  were u t i l i z e d  i n  a test  t o  determine  changes 

of correlat ions and predic tors   a t   d i f fe ren t   t imes  wi th  occurrences  of 

thunderstorms a t  2000-2300 GMT. Analysis  procedures are described by 

Fuelberg (1976). 

Twenty-one candidate  predictors were ca lcu la ted   for  each gr id   point  

a t  1200 GMT, 1500 GMT, and  1800 GMT. The predictand w a s  the  highest  

MDR value  (converted to   b inary)  i n  an area  equivalent  to a 138-km box 

surrounding  the  grid  point as i n  previous work and f o r  any time  during 

the  period 2000 t o  23'30 GMT. Again, var iable   select ion  techniques were 

used t o  choose subsets  of  predictors.  Stepwise  procedures  provided 

the f i rs t  several   predictors ;  a l l  possible  regressions were considered 

i n  the  se lec t ion  of variables  four  through  six. A stepdown o r  backward 

elimination  procedure was used for   those models beyond s ix   va r i ab le s .  

Separate  regression  analyses were performed fo r  each  period, and the 

same candidate  predictors as discussed  ear l ier  were avai lable   to   each.  

Maximum R2 achieved  for  each model from  a one-variable model up t o  a 

model w i t h  a l l  2 1  var iables  is  shown i n  Fig. 1 2 .  As expected, most of 

the  explained  variance was obtained  with  the first three  var iables .  

What is surpr is ing is  tha t   t he  1800 GMT predictor  time, which is c loses t  

to   the   t ime  for  which the  forecast  is made, did  not  provide a c lear ly  
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24 APRIL 1975 

- 1200 GMT 

- 1500 CHT 

I800 GMT 

n =  49 

-.-.- 

Fig. 1 2 .  Fractional amount of total   var iance i n  thunderstorm  occurrence 
accounted  for by numbers of predictors  and  a combination of 
selection  procedures. 

superior  equation. With models including  the  leading  one and two 

predictors ,  R is highest  for 1200 GMT and lowest  for 1500 GMT though 

the   d i f fe rences   a re   s l igh t .  Maximum R of 0.874 w a s  achieved  for  the 

a l l -var iab le  model w i t h  1500 GMT data ,  whereas the maximum R2 seem to  

reach a plateau beyond ten variables €or the 1800 GMT p e r i o d .  No com- 

pletely  sat isfying  explanat ion is  apparent  for  the  lack  of improvement 

as  the  predictand  time is approached; however, there   a re  some 

2 

2 

8 3  



possibilities.  As  pointed  out  in  Section 2 ,  the  assumptions  inherent 

in an analysis  of  this  type  are,not  fulfilled.  These  errors  may  be 

preventing  the  measure  of  true  correlafions.  Secondly,  this  was  one 

day  for  which  there  were  only 49 observations,  and  many  of  these  were 

not  independent. 

On  this  day  most  of  the  thunderstorm  activity  was  associated  with 

two  squall  lines.  As  shown  in  Fig.  13,  the  first  group  of  cells  was 

dissipating  and  moving  southeastward  between  1200  and  1500  GMT.  At 

1800 GMT  there  were  few  echoes.  The  second  line  became  active  after 

2100  GMT.  One  may  hypothesize  that  there  were  different  atmospheric 

environments  created  by  the  occurrence  or  nonoccurrence  of  convection 

at  many  of  the 49 points  for  each  time.  Similarly, a discontinucy 

existed  across  the  area  in  the  form  of a stationary  front  shown  in 

Fig. 14. Such a feature  complicates  the  interpretation  of  results  for 

all  points  as  each  is  considered an independent,  separate  observation. 

For  example,  temperature  may  be  important  to  thunderstorm  development 

in  the  area  behind  (in  the  cool  air)  the  front,  but  its  influence  may 

be  masked  by  the  many  observations  in  the  warm  air  where  it  may  not 

be  important  at  all.  Finally,  the  response  of  the  atmosphere  to  the 

synoptic-scale  parameters  is  being  measured.  There  may  be  different 

response  times  for  different  parameters.  It is possible  that  those 

upper-air  Features  at 1800 GMT  to  which  the  atmosphere  responds  most 

exist  on a horizontal  and  vertical  scale  smaller  than  can  be  resolved 

from  our  data. 

Table 18 contains  the  predictors  selected  during  each  of  the  three 

periods.  Up  to  the  five-variable  model  all  antecedent  predictors  are 
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Fig. 13. 

(a) 1200 GKC 

+ 
(b) 1500 GMT 

PIDR data fo r  the AVE I V  experiment. The code is 
explained  in  T a b l e  6. 
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( c )  1800 GMT 

'. ; '\ " - . 
.* 
(d)  2100 GMT 

Fig. 13. (Concluded) 
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( a )  S u r f a c e .  

(b) 850 mb. 

F i g . 1 4 .  S y n o p t i c   c h a r t s   f o r  2100 GMT, 24 Apr i l   1975 .  
(Fucik  and T u r n e r ,  1975) . 
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T a b l e  18. S u m m a r y  of AVE I V  results for  stepwise ( A ) ,  m a x i m u m  R reduction (B), and stepdown (C) 2 

variable selection techniques. 

~~ 

umber of 
ariables 

1 
2 
3 
4 
5 
6 

8 
10 
12 
14 

2 1  ( A l l  

;election 
Cechnique 

A 
A 
A 
B 
B 
B 

C 
C 
C 
C 

C 

r 

" 

i 

1200 GMT 

P a r a m e t e r  R 
2 

UWSH 0.341 
DTA 0.677 
STS I 0.681 
CS I M  0.700 

UWSH, IMDIV, 1 G51, 0.735 
(T-Td) 7 0.710 

W8, (T-Td) 7, VSUM 
- - 

- 
0.835 
0.849 

- 0.856 

c 

" 

I 
1500 GMT 

Parameter R 2 

UWSH 0.287 
DXA 0.496 
h 5  I 0.641 
DTH 0.696 
VSUM 0.721 

DTA, I V5 1 ,  DTH 
C S I M ,   T T I ,  UWSH, 0.734 

- 0.842 

- 0.874 

1800 GMT' 

Parameter R2 

DTA 
DTH 

'e7 
UWSH 
IMDIV 
C S I M ,   T T I ,  ZTSI,  
UWSH , DTA, jv5 I 

0.302 
0.628 
0.678 
0.729 
0.739 
0.750 

- 
0.763 

1 

1 

- - 0.7781 
0.796 

1 
. I  

1 
- I  - 0.8008 



included.  For  example,  the  best  five-variable  model  with  1200 GMT 

data  includes  u-component  wind  shear,  differential  temperature  advec- 

tion,  static  stability  index,  mid-level  convective  instability,  and  the 

dew-point  depression  at 700 mb.  After  five  predictors  different  vari- 

ables  are  chosen,  some of which  were  not  selected  up  to  that  point. 

Again,  the  particular  variables  selected  beyond  five  should  not  really 

be  discussed  since  these  are  undoubtedly  more a function  of the. 

particular  selection  technique  than  any  physical  mechanism. 

The  first  few  variables  included  in  the  model  can  be  discussed  in 

that  these  variables  in  linear  combination  are  most  highly  correlated 

to  subsequent  thunderstorms  on  24  April  1975.  The  difference  between 

the  u-wind  component  at 500 and 850 mb  is  important  at  the  earlier  two 

times.  This  term  is  related  to  the  mean  horizontal  temperature  gradient 

in  the  layer  between 850 and 500 mb  insofar  as  the  winds  are  geostrophic. 

Differential  temperature  advection  between 850 and 500 mb  is  also  an 

important  term  as  it  is  among  the  top  two  predictors  for  all  times. 

Temperature  advection  probably was an  important  mechanism  for  creating 

the  instability  on  this  day.  It is interesting  to  note  that  the  u-compo- 

nent  wind  shear  was  the  first  variable  selected  for  the  model  at  both 

1200  and  1500  GMT  observation  times,  whereas  it  is  fourth  at 1800 GMT. 

This  may  be a consequence  of  the  environmental  influence  of  thunder- 

storms  present  at  the  earlier  times  but  almost  totally  absent  at 1800 GMT. 

From  an  energy  study  of  this  day,  Fuelberg (1976) found  strong  conver- 

sion  of  potential  to  kinetic  energy  associated  with  intensifying 

convection.  The  maximum  conversion  was  at 400 mb. A selection  of 

different  variables  measured  at  different  times or the  same  variables 
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in  different  order  could  also  be a result  of  differences  in  atmospheric 

response  to  dynamic  as  opposed  to  thermodynamic  parameters.  More 

work  needs  to  be  done  in  this  area. 

In summary,  the  linear  combination  of  upper-air  parameters  computed 

from  variables  measured 2 to 5 h before  the  predictand  time  on 24 April 

1975  did  not  explain  more  of  the  variance  of  thunderstorm  occurrence  at 

2000  to 2300 GMT  than  those  measured 8 to  13 h before.  Also,  there  were 

differences  in  parameters  selected  at  the  different  times.  Differential 

temperature  advection  was  important  at  all  times.  The  vertical  wind 

shear  of  the  east-west  wind  component  was  less  important  to  subsequent 

intense  convection  when  the  former  was  computed  from 1800 GMT  measure- 

ments  compared  to  this  parameter  measured  at  1200  or  1500  GMT.  These 

results  may  be a consequence  of  environmental  influences  of  convection 

at  the  earlier  two  times,  since  little  convection  was  apparent  at 1800 

GMT.  They  also  might  result  from  violations  of  model  assumptions. 
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7. SUMMARY AND CONCLUSIONS 

Surface,  upper-air,  and  radar  observations  analyzed  onto a 65-km 

grid  were  used  exclusively  to  develop  equations  which  relate  predictors 

to  subsequent  thunderstorms  by  classical  statistical  and  parameterization 

techniques.  Particular  attention  was  devoted  to  minimizing  errors 

which  result  from  violations of model  assumptions.  Raw  data  were  pro- 

cessed  to  preserve  as  much  detail  as  can  be  justified  from  the  original 

spacing  of  observing  stations.  Every  fourth  point  from a 16 x 16 array 

was  included  to  reduce  the  spatial  correlation  naturally  present  in 

meteorological  data.  Variable  selection  techniques,  plots  of  model 

residuals,  and  principal  component  analyses  were  used  to  reduce  the 

multicollinearity  present  among  independent  variables.  Finally,  several 

different  statistical  procedures  were  used  to  cross-check  and  confirm 

results. 

Specific  synoptic  parameters  believed  to  be  related  to  intense 

convection  were  calculated  from  analyses  at  1200,  1700,  and  1800  GMT 

and  used  as  candidate  predictors  in a stepwise  variable-selection  pro- 

cedure.  Surface  and  upper-air  data  were  tested  separately.  The  pre- 

dictand  was  the  occurrence or nonoccurrence  of  an MDR code  of  four 

or  greater  (assumed  to  represent  thunderstoms)  in  an  area  of  about 

8500  km  surrounding a grid  point  during  three  subsequent  time  combina- 

tions.  The  best  time  was  the  period  from 2000 to 2300 GMT so that  only 

this  combination  was  used  in  further  analyses. 

2 
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The  equations  were  found  to  be  stable"  when  applied, to test  data. 

Also, they  contained  reasonable  parameters  as  predictors  and  produced 

results  in  contingency  tables  comparable  with  present,  subjective 

techniques  and  with  other  statistical  procedures.  Predicted  values 

from  developmental  and  test  samples  represented  actual  thunderstorm 

frequencies  of  occurrence.  This  technique  can  be  used to forecast 

thunderstorms  in  an  operational  environment.  Furthermore,  thunderstorms 

can  be  predicted  with  greater  success  with  this  scheme  when  the  surface 

wind  has a northerly  component  at 1800 GMT. 

While  not  impressive  alone,  upper-air  data  seemed to add  an  impor- 

tant  ingredient,  namely  stability,  which  is  not  available  from  surface 

data.  Radar  echoes  present  at  and  before  the  forecast  time  also  added 

an  important  dimension.  MDR  code  greater  than  one  near 1700 GMT can 

lead  to MDR of four or  greater  between 2000 and 2300 GMT due  to  diurnal 

effects,  or a high  MDR  initially  might  tend  to  persist  in  space  and 

time.  In  any  case,  this  radar  predictor  indicates  the  presence  of 

vertical  motion, a recognized  trigger  mechanism.  Neither  time  nor  space 

derivatives  as  computed  in  this  study  were  particularly  important 

predictors  with  the  notable  exception  of  moisture  divergence.  But  the 

surface  mixing  ratio,  occurrence  of  antecedent  precipitation,  con- 

vergence of moisture,  and  stability  were  chosen  to be among  the  top 

five  predictors  in  every  case. A reason  €or  the  poor  showing  of  other 

"Stable  in  this  context  means  that  statistics  in  both  the 
developmental  and  test  data  sample  are  nearly  the  same. 
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j derivatives  was  that  the  small-scale  gradients  important  to  intense 

convection  cannot  be  measured  due  to  data-resolution  constraints  from 

fixed  observation  networks. 

It  was  found  from  both  the  stepwise  procedure  and  principal-compo- 

nent  analyses  that  linear  equations  should  include  from  five  to  17 

variables  when  parameters  represent  observed  surface  and  upper-air 

features.  Furthermore,  measures of the  trigger  mechanism  were  found 

to  be  most  difficult  to  define  from  data  in  this  study,  whereas  moisture 

parameters  were  easily  defined. 

Equations  with  many  variables  will  produce  slightly  better  results 

in  terms  of  prefigurance  and  postagreement  discriminates.  Reasonable 

values  to  expect  would  be 65% and 40%, respectively. 

Finally,  parameters  from  upper-air  observations  at 1800 GMT  on 

24  April  1974  were  not  more  highly  correlated  to  thunderstorms  in  the 

period 2000-2300 GMT  than  were  parameters  from  observations  at  1200  or 

1500  GMT.  This  result  may  be a consequence  of  the  small  statistical 

sample,  violations  of  assumptions  in  the  statistical  analysis  and  the 

organized  development  and  movement  of  two  groups  of  thunderstorms.  One 

group  influenced  observations  from  which  parameters  were  calculated  at 

1200  and 1500 GMT. 
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8. SUGGESTIONS  FOR  FURTHER  RESEARCH 

In a study  of  this  scope  and  magnitude  there  are  practical  restric- 

tions  on  the  amount  of  data  to  be  handled,  numbers  of  predictors  used, 

and  types of processing  to  be  performed.  It  is  believed  that this 

research  remained  within  these  constraints  without  sacrificing 

scientific  thoroughness  and  accuracy.  Nevertheless,  these  limitations 

and  results  of  the  investigation  itself  pxovide  several  suggestions 

for  future  research. 

a). In  order  to  capture  some  of  the  true  mesoscale  features  of 

the  atmosphere,  synchronous  meteorological  satellite  data  should  be 

used.  Mesoscale  wind  fields  determined  from  satellite  cloud  observa- 

tions  might  be  important  predictors  of  severe  weather  (Houghton  and 

Wilson, 1975). Time  and  space  derivatives  of  equivalent  black  body 

temperatures  might  reveal  small-scale  features  which  lead  to  subsequent 

thunderstorms. A microwave  sensor,  such  as  that  flown  on  the  NASA 

satellites,  would  provide  indications  of  soil  moisture.  Albedo  might 

be  important  as  well.  Some  preliminary  experiments  with  regression 

procedures  and  the  ATS-3  satellite  data  by  Sikula  and  Vonder  Haar (1972) 

indicated  satisfactory  results  when  the  dependent  variables  were  ceilings 

and  visibilities  and  independent  variables  were  satellite  radiances. 

Even  conventional  data  available  from  several  mesoscale  networks 

such  as  HIPLEX  (Scoggins  and  Wilson, 1976) , NSSL  (Fankhauser, 1969), 

and  METROMEX  (Changnon  et  al., 1971) could  be  used  in  this  type of 

study  to  determine  what  additional  information  about  subsequent  thunder- 

storms  is  available  for a few  areas.  Several  thunderstorm  seasons 

must  be  used,  however. 
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b). Severe  thunderstorms  might  be  predicted  from  statistical 

procedures  by  use  of  upper-air  winds  inferred  from  satellite  thickness 

(and  geopotential  height)  calculations.  Areas  of  jet  streams  and 

difluence  aloft  could  be  identified  and  related  to  severe  weather. 

Digital  radar  data  now  available  at  several  locations  (Muench,  1976) 

could  be  used  as  well  as  additive  data  from  present MDR reports  in  con- 

junction  with  severe  weather  prediction. 

c). Different  predictors  from  conventional  data  could  be  tested. 

For  example,  present  weather,  past  weather,  visibility,  wind  gusts, 

sky  conditions  and  remarks  are  available  from  surface  observations. 

Climatological  frequencies  of  occurrence  for  thunderstoms  could  be 

computed  from  all  available  thunderstorm  data  and  these  used  as  pre- 

dictors  as  well.  Use o f  upper-air  data  should  be  expanded  to  include 

all  the  resolution  in  the  present  observation.  In  addition,  time  changes 

for  upper  air  parameters  might  be  tested.  Trajectories  of  key  parameters 

might  make  important  predictors.  The K Index  and TTI  could  both  be 

updated  by  using  the  temperature  and  moisture  from 1800 GMT  surface 

observations  averaged  with  those  observed  at 850 mb 12 h earlier. 

d). The  area  €or  predictor  selection  should  be  allowed  to  vary 

and  predictand  area  reduced.  The  reduction  in  correlation  due  to 

reduced  size  of  predictand  might  be  compensated  for by parameters  from 

smaller-scale  data  sources  selected  from  different  areas. 

e).  More  work  on  the  timeliness  of  upper-air  data  is  required. 

Additional  days  when 3-h data  are  available  should  be  used  to  obtain a 

more  adequate  sample.  Similarly,  further  research  into  the  time  changes 

of surface  and  upper-air  reports  should  be  performed  to  determine 
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atmospheric  response  times  (in  terms of producing  intense  convection) 

for  various  physical  processes  such  as  differential  advections. 

f). Further  work  on  air mass stratifications  would  be  fruitful. 

One  might  use  combinations  of  temperature,  wind  and  moisture  to  identify 

three  or  four  types  of  air  masses.  Five  years  of  digital  radar  data 

will  be  available  for  this  type  of  work  after  the 1977 season. 

9). We  should  continue  to  investigate  random  sampling  or  other 

ways  of  reducing  the  many  nonoccurrence  days. A forecaster  is  not 

concerned  with  predicting  thunderstorms  on  the  many  days  that  he  is 

confident  there  will  be  none. 

h).  There  should  be  more  investigation  into  verification  techniques 

for  this  type  of  data. 
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APPENDIX A 

ANOVA  for  selected  regressions 

(1) Total  Equations  (7  predictors) 

Source  Degrees  of Sum of Squares  Mean  Square F Value  R2 
freedom 

Model 7 239.94357522  34.27765360  294.91  0.22481796 

Error  7118  827.33582417  0.11623150 

Corrected  7125  1067.27939938 
Total 

Parameter  Units - f3 estimate  Standard  error 

Intercept - 3.16740081 - 

MDIV gg s x lo8  -0.00276198  0.00020761 -1 -1 

W 953 25.43248796  1.64332634 

MDRP (1 or 0 )  0.39082300  0.01794391 

CSIL K -0.00512986  0.00069915 

oe 7 K -0.01096999  0.00097647 

w7 gg x 10 0.05462544  0.00395796 

-1 

-1 3 
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(2) Northwind equation (7 predictors)  
~~. ~ ~~~- 

Source  Degrees of Sum of Squares Mean Square F Value R 
2 

freedom 

Mode 1  7 78.07938810  11.15419830  127.84  0.274014 

Error 2371  206.86722812  0.08724894 

Corrected 2378 284.94661623 
Total 

Parameter Units  - f3 estimate  Standard  error 

Intercept  

MDIV 

(T-Td) 

W 

MDRP 

T 

T-Td 

0 
e7 

g9 x 10 -ls-l 8 

K 

gg 
-1 

0 or 1 

K 

K 

K 

1.19350345 

-0.00303301 

-0.00430722 

69.09513072 

0.36068872 

-0.01807394 

0.02365490 

-0.00485763 

0.30434664 

0.00034990 

0.00084002 

6.42057583 

0.02911004 

0.00359192 

0.00360711 

0.00101146 
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(3) Random Equation (6 predictors)  

Source  Degrees of Sum of Squares Mean Square F Value R 
2 

freedom 

Mode 1 6  161.91260308  26.98543385  155.31  0.291224 

Error 2268  394.05926505  0.17374747 

Corrected 2274  555.97186813 
Total 

Parameter U n i t s  - f3 estimate  Standard  error 

Intercept  - 1.57191166  0.46848081 

MDIV -ls-l 
gg x 10 -0.00340850  0.00039607 

(T-Td) K -0.00789130  0.00129024 

W gg 46.44806192  3.21385797 
-1 

TTI K 0.01232299  0.00144379 

0 
e7 

K -0.00650511  0.00150835 

MDRP 0 or 1 0.24007083  0.02659094 
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(4) Total Equation  (20  predictors) 
. . . . - . - 
”” .” .” . - ” ~ - .  - -~ 

.. -.  _” - . .” . -  ~ 

. .  

Source  Degrees of Sum of Squares Mean Square F Value R 2 

freedom 
- ” ~ . - ~  - ~ - - ” . . . - .. ~~ - ~ 

Model  20 259.37113846 12.96855692  114.05 0 - 24302084 

Error 7105 807.90826092 0.11370982 

Corrected 7125 1067.27939938 
Total 
”””“”””””””””””””””””””””””“””“”””””” 

Parameter  Units - B estimate Standard error 
. . ~~ 

Intercept  

@e 

MDIV 

OeA 

$2P 

5 

T 2 W  

KI 

DTH 

(T-Td) 

(T-Td) 

V 5 

w 

MDRP 

V 

CSIM 

K 

gg x 10 -ls-1 8 

Ks-1 x 10 6 

mb x 10 

s. x 10 -1 6 

-1 -2 gg m x 1 0  15 

1 2  

K 

K 

K 

m 

94 
-1 

(0 or  1) 

-1 Ins 

K 

8.91002397 

0.00762649 

-0.00228346 

0.00006796 

0.00008997 

0.00036562 

0.00009605 

0.01872137 

-0.00127867 

0.01376441 

0.02245995 

0.00262488 

10.97990075 

0.39041505 

-0.00397307 

-0.15500734 

- 
0.00105337 

0.00023036 

0.00002784 

0.00005411 

0.00023066 

0.00002797 

0.00316708 

0.00055703 

0.00341045 

0.00355782 

0.00048169 

3.09197109 

0.01793046 

0.00112285 

0.02892617 
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fd) Total  Equation  (20  predictors) (Concluded) 

Parameter  Units - 6 estimate  Standard  error 

STS I 

0 

0 

w8 

e8 

e7 

0.01596813  0.00284876 

-0.03357575  0.00484179 . 

-0.00633453  0.00142566 

0.14166814  0.01732946 

U rns -1 -0.00565405  0.00146472 
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APPENDIX B 

Contingency tables  for  different  predicted  probabili ty.   thresholds and 
dependent  equations  applied  as  indicated. 

(1) Total  dependent  equation  applied  to: 

C u t  off  Total  independent  data  Total  dependent  data 
" .~ _ _ _ _ _ . ~ -  - - ~- - .. . " ~ 

0.22 

0.25 

0.28 

0.30 

0.32 

- "" . . . .  

232  2002 

I 
No I 708 

I Yes 

No I 419 

1 
3216 1 

No 

367 

335  3589 
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(2) North wind dependent  equation  applied to: 

c u t  off  Northwind 
independent  data 

Northwind 
dependent  data 

""- 
0.25 

No 

0.28 

0.30 

0.34 

0.37 

No 92 672 

NO 1 68 1 6961 

No 

Yes 

1260 140 No 

75 143 Yes 

No 

I Y e s  

No 

90 

1304 

No 

Yes 

1317 8 3  No 

104 114 
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(3) Southwind  dependent  equation  applied to: 

cut off Southwind 
independent  data 

Southwind 
dependent  data 

0.25 

0.27 

0.30 

0.33 

j"q 
259 1211 

No 1 210 I 1260 I 

t- 185 229 
No I 136  (1334 1 

521 2003 

j Yes 

Yes I 372 

No 1 425 1 2099 1 

21 
2213 *I 

226 2298 

1 1 1  



(4) Random sample  dependent  equation  applied  to: 

cu t  off Total  independent  data 

0.42 I Yes 

0.50 

0.65 

No 

85 

1245 

Random Random 
independent  data dependent data 

0.46 

0.50 

Yes 

262 103 No 

128 408 
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